Skip to content

Training

Solvers for training, testing, checkpointing and recovering of networks.

MultiTaskSolver

Implements training, testing, checkpoint, recovering of flyvis networks.

Gives access to the network, decoder, task, optimizer, penalty and scheduler and the directory where the results are stored.

Parameters:

Name Type Description Default
name str

Name of the solver.

''
config Optional[Union[dict, Namespace]]

Configuration for the solver.

None
init_network bool

Whether to initialize the network. Defaults to True.

True
init_decoder bool

Whether to initialize the decoder. Defaults to True.

True
init_task bool

Whether to initialize the task. Defaults to True.

True
init_optim bool

Whether to initialize the optimizer. Defaults to True.

True
init_penalties bool

Whether to initialize penalties. Defaults to True.

True
init_scheduler bool

Whether to initialize the scheduler. Defaults to True.

True
delete_if_exists bool

Whether to delete existing directory. Defaults to False.

False

Attributes:

Name Type Description
dir NetworkDir

Directory where results are stored.

network Network

The neural network.

decoder Dict[str, Module]

The decoder modules.

task Task

The task being solved.

optimizer Optimizer

The optimizer.

penalty Penalty

The penalty object.

scheduler HyperParamScheduler

The hyperparameter scheduler.

Example
from flyvis.utils.config_utils import get_default_config
# Note: the config is typically defined through the command line.
config = get_default_config(overrides=["task_name=flow",
                                       "ensemble_and_network_id=0"])
solver = MultiTaskSolver("test", config)
solver.train()
Source code in flyvis/solver.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
class MultiTaskSolver:
    """Implements training, testing, checkpoint, recovering of flyvis networks.

    Gives access to the network, decoder, task, optimizer, penalty and scheduler and
    the directory where the results are stored.

    Args:
        name: Name of the solver.
        config: Configuration for the solver.
        init_network: Whether to initialize the network. Defaults to True.
        init_decoder: Whether to initialize the decoder. Defaults to True.
        init_task: Whether to initialize the task. Defaults to True.
        init_optim: Whether to initialize the optimizer. Defaults to True.
        init_penalties: Whether to initialize penalties. Defaults to True.
        init_scheduler: Whether to initialize the scheduler. Defaults to True.
        delete_if_exists: Whether to delete existing directory. Defaults to False.

    Attributes:
        dir (NetworkDir): Directory where results are stored.
        network (Network): The neural network.
        decoder (Dict[str, nn.Module]): The decoder modules.
        task (Task): The task being solved.
        optimizer (torch.optim.Optimizer): The optimizer.
        penalty (Penalty): The penalty object.
        scheduler (HyperParamScheduler): The hyperparameter scheduler.

    Example:
        ```python
        from flyvis.utils.config_utils import get_default_config
        # Note: the config is typically defined through the command line.
        config = get_default_config(overrides=["task_name=flow",
                                               "ensemble_and_network_id=0"])
        solver = MultiTaskSolver("test", config)
        solver.train()
        ```
    """

    def __init__(
        self,
        name: str = "",
        config: Optional[Union[dict, Namespace]] = None,
        init_network: bool = True,
        init_decoder: bool = True,
        init_task: bool = True,
        init_optim: bool = True,
        init_penalties: bool = True,
        init_scheduler: bool = True,
        delete_if_exists: bool = False,
    ) -> None:
        name = name or config["network_name"]
        assert isinstance(name, str), "Provided name argument is not a string."
        self.dir = NetworkDir(
            name, {**(config or {}), **dict(delete_if_exists=delete_if_exists)}
        )

        self.path = self.dir.path

        self.config = self.dir.config

        self.iteration = 0
        self._val_loss = float("inf")
        self.checkpoint_path = self.dir.path / "chkpts"
        checkpoints = resolve_checkpoints(self.dir)
        self.checkpoints = checkpoints.indices
        self._last_chkpt_ind = -1
        self._curr_chkpt_ind = -1

        self._initialized = self._init_solver(
            init_network=init_network,
            init_decoder=init_decoder,
            init_task=init_task,
            init_optim=init_optim,
            init_penalties=init_penalties,
            init_scheduler=init_scheduler,
        )

        logging.info("Initialized solver.")
        logging.info(repr(self.config))

    def _init_solver(
        self,
        init_network: bool = False,
        init_decoder: bool = False,
        init_task: bool = False,
        init_optim: bool = False,
        init_penalties: bool = False,
        init_scheduler: bool = False,
    ) -> list:
        """Initialize solver components.

        Args:
            init_network: Whether to initialize the network.
            init_decoder: Whether to initialize the decoder.
            init_task: Whether to initialize the task.
            init_optim: Whether to initialize the optimizer.
            init_penalties: Whether to initialize penalties.
            init_scheduler: Whether to initialize the scheduler.

        Returns:
            A list of initialized components.
        """
        initialized = []

        if init_network:
            self.network = Network(**self.config.network)
            initialized.append("network")

        if init_task:
            self.task = Task(**self.config.task)
            initialized.append("task")

            if init_decoder:
                self.decoder = self.task.init_decoder(self.network.connectome)
                initialized.append("decoder")

        if init_optim:
            self.optimizer = self._init_optimizer(
                self.config.optim, self.network, self.decoder
            )
            initialized.append("optim")

        if init_penalties:
            self.penalty = Penalty(self.config.penalizer, self.network)
            initialized.append("penalties")

        if init_scheduler:
            self.scheduler = HyperParamScheduler(
                self.config.scheduler,
                self.network,
                self.task,
                self.optimizer,
                self.penalty,
            )
            self.scheduler(self.iteration)
            initialized.append("scheduler")

        return initialized

    @staticmethod
    def _init_optimizer(
        optim: Namespace, network: Network, decoder: Optional[Dict[str, nn.Module]]
    ) -> torch.optim.Optimizer:
        """Initializes the optimizer for network and decoder.

        Args:
            optim: Optimizer configuration.
            network: The neural network.
            decoder: The decoder modules.

        Returns:
            The initialized optimizer.
        """

        def decoder_parameters(decoder: Dict[str, nn.Module]):
            """Returns decoder parameters."""
            params = []
            for nn_module in decoder.values():
                params.append(
                    dict(
                        params=[w for w in nn_module.parameters()],
                        **config.optim_dec,
                    )
                )
            return params

        config = optim.deepcopy()

        optim_type = config.pop("type", "Adam")
        optim = torch.optim.__dict__[optim_type]
        logging.info("Initializing %s for network and decoder.", optim.__name__)

        param_groups = [dict(params=network.parameters(), **config.optim_net)]

        if decoder:
            param_groups.extend(decoder_parameters(decoder))

        return optim(param_groups)

    def train(self, overfit: bool = False, initial_checkpoint: bool = True) -> None:
        """Trains the network by backprop through time.

        Args:
            overfit: If true, the dataloader is substituted by a
                single-sequence loader and augmentation is turned off.
            initial_checkpoint: Whether to create an initial checkpoint when debugging.

        Raises:
            OverflowError: If the activity or loss reports NaN values for more
                than 100 iterations.

        Stores:
            ```bash
            dir / loss.h5
            dir / loss_<task>.h5
            dir / activity.h5
            dir / activity_min.h5
            dir / activity_max.h5
            ```
        """
        # return if iterations have already been trained.
        if self.iteration >= self.task.n_iters:
            return

        # to debug code within the training loop the initial checkpoint should be
        # disabled
        if initial_checkpoint:
            self.checkpoint()

        logging.info("Starting training.")
        # The overfit_data dataloader only contains a single sequence and
        # this is to debug the model architecture, configs etc.
        dataloader = self.task.overfit_data if overfit else self.task.train_data
        # For overfitting we also turn the augmentation off.
        augment = not overfit

        # The number of full presentations of the training data is derived from the
        # preset number of training iterations, the length of the dataloader and the
        # current iteration.
        n_epochs = np.ceil((self.task.n_iters - self.iteration) / len(dataloader)).astype(
            int
        )

        # This is after how many epochs the training states are checkpointed.
        chkpt_every_epoch = self.config.scheduler.chkpt_every_epoch

        logging.info("Training for %s epochs.", n_epochs)
        logging.info("Checkpointing every %s epochs.", chkpt_every_epoch)

        # Initialize data structures to store the loss and activity over iterations.
        loss_over_iters = []
        activity_over_iters = []
        activity_min_over_iters = []
        activity_max_over_iters = []
        loss_per_task = {f"loss_{task}": [] for task in self.task.dataset.tasks}

        start_time = time.time()
        with self.task.dataset.augmentation(augment):
            for epoch in range(n_epochs):
                # The default is to compute a steady state for each epoch, then
                # it's computed here. Note: unless done per iteration, parameter updates
                # within epochs are not considered in the steady state.
                steady_state = self.network.steady_state(
                    t_pre=self.config.get("t_pre_train", 0.5),
                    dt=self.task.dataset.dt,
                    batch_size=dataloader.batch_size,
                    value=0.5,
                )

                for _, data in enumerate(dataloader):

                    def handle_batch(data, steady_state):
                        """Closure to free memory by garbage collector effectively."""

                        # Resets the stimulus buffer (samples, frames, neurons).
                        n_samples, n_frames, _, _ = data["lum"].shape
                        self.network.stimulus.zero(n_samples, n_frames)

                        # Add batch of hex-videos (#frames, #samples, #hexals) as
                        # photorecptor stimuli.
                        self.network.stimulus.add_input(data["lum"])

                        # Reset gradients.
                        self.optimizer.zero_grad()

                        # Run stimulus through network.
                        activity = self.network(
                            self.network.stimulus(),
                            self.task.dataset.dt,
                            state=steady_state,
                        )

                        losses = {task: 0 for task in self.task.dataset.tasks}
                        for task in self.task.dataset.tasks:
                            y = data[task]
                            y_est = self.decoder[task](activity)

                            # to pass additional kwargs to the loss function, from
                            # the data batch from the dataset
                            losses[task] = self.task.loss(
                                y_est, y, task, **data.get("loss_kwargs", {})
                            )

                        # Sum all task losses. The weighting of the tasks is done in the
                        # loss function.
                        loss = sum(losses.values())

                        # Compute gradients.
                        loss.backward(retain_graph=True)
                        # Update parameters.
                        self.optimizer.step()

                        # Activity and parameter dependent penalties.
                        self.penalty(activity=activity, iteration=self.iteration)

                        # Log results.
                        loss = loss.detach().cpu()
                        for task in self.task.dataset.tasks:
                            loss_per_task[f"loss_{task}"].append(
                                losses[task].detach().cpu()
                            )
                        loss_over_iters.append(loss)
                        activity = activity.detach().cpu()
                        mean_activity = activity.mean()
                        activity_over_iters.append(mean_activity)
                        activity_min_over_iters.append(activity.min())
                        activity_max_over_iters.append(activity.max())
                        return loss, mean_activity

                    # Call closure.
                    loss, mean_activity = handle_batch(data, steady_state)

                    # Increment iteration count.
                    self.iteration += 1

                # Interrupt training if the network explodes.
                if torch.isnan(loss) or torch.isnan(mean_activity):
                    logging.warning("Network exploded.")
                    raise OverflowError("Invalid values encountered in trace.")

                # The scheduling of hyperparams are functions of the iteration
                # however, we allow steps only after full presentations of the data.
                if epoch + 1 != n_epochs:
                    self.scheduler(self.iteration)
                    logging.info("Scheduled paremeters for iteration %s.", self.iteration)

                # Checkpointing.
                if (epoch % chkpt_every_epoch == 0) or (epoch + 1 == n_epochs):
                    self.dir.loss = loss_over_iters
                    self.dir.activity = activity_over_iters
                    self.dir.activity_min = activity_min_over_iters
                    self.dir.activity_max = activity_max_over_iters

                    for task in self.task.dataset.tasks:
                        self.dir[f"loss_{task}"] = loss_per_task[f"loss_{task}"]

                    self.checkpoint()

                logging.info("Finished epoch.")

        time_elapsed = time.time() - start_time
        time_trained = self.dir.time_trained[()] if "time_trained" in self.dir else 0
        self.dir.time_trained = time_elapsed + time_trained
        logging.info("Finished training.")

    def checkpoint(self) -> None:
        """Creates a checkpoint.

        Validates on the validation data calling ~self.test.
        Validates on a training batch calling ~self.track_batch.
        Stores a checkpoint of the network, decoder and optimizer parameters using
        pytorch's pickle function.

        Stores:
            ```bash
            dir / chkpt_index.h5  # (List): numerical identifier of the checkpoint.
            dir / chkpt_iter.h5  # (List): iteration at which this checkpoint was
                                 # recorded.
            dir / best_chkpt_index.h5  # (int): chkpt index at which the val loss is
                                       # minimal.
            dir / dt.h5  # (float): the current time constant of the dataset.
            dir / chkpts / chkpt_<chkpt_index>  # (dict): the state dicts of the network,
                                                # decoder and optimizer.
            ```
        """
        self._last_chkpt_ind += 1
        self._curr_chkpt_ind += 1

        # Tracking of validation loss and training batch loss.
        logging.info("Test on validation data.")
        val_loss = self.test(
            dataloader=self.task.val_data, subdir="validation", track_loss=True
        )
        logging.info("Test on validation batch.")
        _ = self.test(
            dataloader=self.task.val_batch, subdir="validation_batch", track_loss=True
        )
        logging.info("Test on training data.")
        _ = self.test(dataloader=self.task.train_data, subdir="training", track_loss=True)
        logging.info("Test on training batch.")
        _ = self.test(
            dataloader=self.task.train_batch, subdir="training_batch", track_loss=True
        )

        logging.info("Saving state dicts.")
        # Store state of pytorch modules.
        nn_state_dict = self.network.state_dict()
        dec_state_dict = {}
        if self.decoder:
            dec_state_dict = valmap(lambda x: x.state_dict(), self.decoder)
        chkpt = {
            "network": nn_state_dict,
            "decoder": dec_state_dict,
            "optim": self.optimizer.state_dict(),
            "time": time.ctime(),
            "val_loss": val_loss,
            "iteration": self.iteration - 1,
            "dt": self.task.dataset.dt,
        }
        if hasattr(self, "penalty"):
            chkpt.update(self.penalty._chkpt())
        torch.save(chkpt, self.checkpoint_path / f"chkpt_{self._last_chkpt_ind:05}")

        # Append chkpt index.
        self.checkpoints.append(self._last_chkpt_ind)
        self.dir.extend("chkpt_index", [self._last_chkpt_ind])
        self.dir.extend("chkpt_iter", [self.iteration - 1])
        self.dir.dt = self.task.dataset.dt

        # Overwrite best val loss.
        if val_loss < self._val_loss:
            self.dir.best_chkpt_index = self._last_chkpt_ind
            self._val_loss = val_loss

        logging.info("Checkpointed.")

    @torch.no_grad()
    def test(
        self,
        dataloader: torch.utils.data.DataLoader,
        subdir: str = "validation",
        track_loss: bool = False,
        t_pre: float = 0.25,
    ) -> float:
        """Tests the network on a given dataloader.

        Args:
            dataloader: Data to test on.
            subdir: Name of subdirectory. Defaults to 'validation'.
            track_loss: Whether to store the loss in dir.subdir.
            t_pre: Warmup time before the stimulus starts.

        Returns:
            Validation loss.

        Stores:
            ```bash
            dir.<subdir>.loss_<task>  # (List): Loss per task, averaged over whole
                                      # dataset.
            dir.<subdir>.iteration  # (List): Iteration when this was called.
            dir.<subdir>.loss  # (List): Average loss over tasks.
            ```
        """
        self._eval()
        logging.info("Test")

        # Update hypterparams.
        self.scheduler(self.iteration)

        initial_state = self.network.steady_state(
            t_pre=t_pre,
            dt=self.task.dataset.dt,
            batch_size=dataloader.batch_size,
            value=0.5,
        )
        losses = {task: () for task in self.task.dataset.tasks}  # type: Dict[str, Tuple]

        with self.task.dataset.augmentation(False):
            for _, data in enumerate(dataloader):
                n_samples, n_frames, _, _ = data["lum"].shape
                self.network.stimulus.zero(n_samples, n_frames)

                self.network.stimulus.add_input(data["lum"])

                activity = self.network(
                    self.network.stimulus(),
                    self.task.dataset.dt,
                    state=initial_state,
                )

                for task in self.task.dataset.tasks:
                    y = data[task]
                    y_est = self.decoder[task](activity)

                    losses[task] += (
                        self.task.loss(y_est, y, task, **data.get("loss_kwargs", {}))
                        .detach()
                        .cpu()
                        .item(),
                    )

        # track loss per task.
        avg_loss_per_task = {}
        for task in self.task.dataset.tasks:
            # average the loss over the whole dataset
            avg_loss_per_task[task] = np.mean(losses[task])
            if track_loss:
                self.dir[subdir].extend("loss" + "_" + task, [avg_loss_per_task[task]])

        # average the loss over all tasks with equal weight
        summed_loss = sum(avg_loss_per_task.values())
        val_loss = summed_loss / len(avg_loss_per_task)

        if track_loss:
            self.dir[subdir].extend("iteration", [self.iteration])
            self.dir[subdir].extend("loss", [val_loss])

        self._train()

        return val_loss

    def _train(self) -> None:
        """Sets nn.Modules to train state."""
        self.network.train()
        if self.decoder is not None:
            for decoder in self.decoder.values():
                decoder.train()

    def _eval(self) -> None:
        """Sets nn.Modules to eval state."""
        self.network.eval()
        if self.decoder is not None:
            for decoder in self.decoder.values():
                decoder.eval()

    def recover(
        self,
        network: bool = True,
        decoder: bool = True,
        optimizer: bool = True,
        penalty: bool = True,
        checkpoint: Union[int, str] = "best",
        validation_subdir: str = "validation",
        loss_file_name: str = "loss",
        strict: bool = True,
        force: bool = False,
    ) -> None:
        """Recovers the solver state from a checkpoint.

        Args:
            network: Recover network parameters.
            decoder: Recover decoder parameters.
            optimizer: Recover optimizer parameters.
            penalty: Recover penalty parameters.
            checkpoint: Index of the checkpoint to recover.
            validation_subdir: Name of the subdir to base the best checkpoint on.
            loss_file_name: Name of the loss to base the best checkpoint on.
            strict: Whether to load the state dict of the decoders strictly.
            force: Force recovery of checkpoint if _curr_chkpt_ind is already
                the same as the checkpoint index.
        """
        checkpoints = resolve_checkpoints(
            self.dir, checkpoint, validation_subdir, loss_file_name
        )

        if checkpoint.index is None or not any((network, decoder, optimizer, penalty)):
            logging.info("No checkpoint found. Continuing with initialized parameters.")
            return

        if checkpoints.index == self._curr_chkpt_ind and not force:
            logging.info("Checkpoint already recovered.")
            return

        # Set the current and last checkpoint index. New checkpoints incrementally
        # increase the last checkpoint index.
        self._last_chkpt_ind = checkpoints.indices[-1]
        self._curr_chkpt_ind = checkpoints.index

        # Load checkpoint data.
        state_dict = torch.load(checkpoints.path)
        logging.info(f"Checkpoint {checkpoints.path} loaded.")

        self.iteration = state_dict.get("iteration", None)

        if "scheduler" in self._initialized:
            # Set the scheduler to the right iteration.
            self.scheduler(self.iteration)

        # The _val_loss variable is used to keep track of the best checkpoint according
        # to the evaluation routine during training.
        self._val_loss = state_dict.pop("val_loss", float("inf"))

        if network and "network" in self._initialized:
            recover_network(self.network, state_dict)
        if decoder and "decoder" in self._initialized:
            recover_decoder(self.decoder, state_dict, strict=strict)
        if optimizer and "optim" in self._initialized:
            recover_optimizer(self.optimizer, state_dict)
        if penalty and "penalties" in self._initialized:
            recover_penalty_optimizers(self.penalty.optimizers, state_dict)

        logging.info("Recovered modules.")

train

train(overfit=False, initial_checkpoint=True)

Trains the network by backprop through time.

Parameters:

Name Type Description Default
overfit bool

If true, the dataloader is substituted by a single-sequence loader and augmentation is turned off.

False
initial_checkpoint bool

Whether to create an initial checkpoint when debugging.

True

Raises:

Type Description
OverflowError

If the activity or loss reports NaN values for more than 100 iterations.

Stores
dir / loss.h5
dir / loss_<task>.h5
dir / activity.h5
dir / activity_min.h5
dir / activity_max.h5
Source code in flyvis/solver.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def train(self, overfit: bool = False, initial_checkpoint: bool = True) -> None:
    """Trains the network by backprop through time.

    Args:
        overfit: If true, the dataloader is substituted by a
            single-sequence loader and augmentation is turned off.
        initial_checkpoint: Whether to create an initial checkpoint when debugging.

    Raises:
        OverflowError: If the activity or loss reports NaN values for more
            than 100 iterations.

    Stores:
        ```bash
        dir / loss.h5
        dir / loss_<task>.h5
        dir / activity.h5
        dir / activity_min.h5
        dir / activity_max.h5
        ```
    """
    # return if iterations have already been trained.
    if self.iteration >= self.task.n_iters:
        return

    # to debug code within the training loop the initial checkpoint should be
    # disabled
    if initial_checkpoint:
        self.checkpoint()

    logging.info("Starting training.")
    # The overfit_data dataloader only contains a single sequence and
    # this is to debug the model architecture, configs etc.
    dataloader = self.task.overfit_data if overfit else self.task.train_data
    # For overfitting we also turn the augmentation off.
    augment = not overfit

    # The number of full presentations of the training data is derived from the
    # preset number of training iterations, the length of the dataloader and the
    # current iteration.
    n_epochs = np.ceil((self.task.n_iters - self.iteration) / len(dataloader)).astype(
        int
    )

    # This is after how many epochs the training states are checkpointed.
    chkpt_every_epoch = self.config.scheduler.chkpt_every_epoch

    logging.info("Training for %s epochs.", n_epochs)
    logging.info("Checkpointing every %s epochs.", chkpt_every_epoch)

    # Initialize data structures to store the loss and activity over iterations.
    loss_over_iters = []
    activity_over_iters = []
    activity_min_over_iters = []
    activity_max_over_iters = []
    loss_per_task = {f"loss_{task}": [] for task in self.task.dataset.tasks}

    start_time = time.time()
    with self.task.dataset.augmentation(augment):
        for epoch in range(n_epochs):
            # The default is to compute a steady state for each epoch, then
            # it's computed here. Note: unless done per iteration, parameter updates
            # within epochs are not considered in the steady state.
            steady_state = self.network.steady_state(
                t_pre=self.config.get("t_pre_train", 0.5),
                dt=self.task.dataset.dt,
                batch_size=dataloader.batch_size,
                value=0.5,
            )

            for _, data in enumerate(dataloader):

                def handle_batch(data, steady_state):
                    """Closure to free memory by garbage collector effectively."""

                    # Resets the stimulus buffer (samples, frames, neurons).
                    n_samples, n_frames, _, _ = data["lum"].shape
                    self.network.stimulus.zero(n_samples, n_frames)

                    # Add batch of hex-videos (#frames, #samples, #hexals) as
                    # photorecptor stimuli.
                    self.network.stimulus.add_input(data["lum"])

                    # Reset gradients.
                    self.optimizer.zero_grad()

                    # Run stimulus through network.
                    activity = self.network(
                        self.network.stimulus(),
                        self.task.dataset.dt,
                        state=steady_state,
                    )

                    losses = {task: 0 for task in self.task.dataset.tasks}
                    for task in self.task.dataset.tasks:
                        y = data[task]
                        y_est = self.decoder[task](activity)

                        # to pass additional kwargs to the loss function, from
                        # the data batch from the dataset
                        losses[task] = self.task.loss(
                            y_est, y, task, **data.get("loss_kwargs", {})
                        )

                    # Sum all task losses. The weighting of the tasks is done in the
                    # loss function.
                    loss = sum(losses.values())

                    # Compute gradients.
                    loss.backward(retain_graph=True)
                    # Update parameters.
                    self.optimizer.step()

                    # Activity and parameter dependent penalties.
                    self.penalty(activity=activity, iteration=self.iteration)

                    # Log results.
                    loss = loss.detach().cpu()
                    for task in self.task.dataset.tasks:
                        loss_per_task[f"loss_{task}"].append(
                            losses[task].detach().cpu()
                        )
                    loss_over_iters.append(loss)
                    activity = activity.detach().cpu()
                    mean_activity = activity.mean()
                    activity_over_iters.append(mean_activity)
                    activity_min_over_iters.append(activity.min())
                    activity_max_over_iters.append(activity.max())
                    return loss, mean_activity

                # Call closure.
                loss, mean_activity = handle_batch(data, steady_state)

                # Increment iteration count.
                self.iteration += 1

            # Interrupt training if the network explodes.
            if torch.isnan(loss) or torch.isnan(mean_activity):
                logging.warning("Network exploded.")
                raise OverflowError("Invalid values encountered in trace.")

            # The scheduling of hyperparams are functions of the iteration
            # however, we allow steps only after full presentations of the data.
            if epoch + 1 != n_epochs:
                self.scheduler(self.iteration)
                logging.info("Scheduled paremeters for iteration %s.", self.iteration)

            # Checkpointing.
            if (epoch % chkpt_every_epoch == 0) or (epoch + 1 == n_epochs):
                self.dir.loss = loss_over_iters
                self.dir.activity = activity_over_iters
                self.dir.activity_min = activity_min_over_iters
                self.dir.activity_max = activity_max_over_iters

                for task in self.task.dataset.tasks:
                    self.dir[f"loss_{task}"] = loss_per_task[f"loss_{task}"]

                self.checkpoint()

            logging.info("Finished epoch.")

    time_elapsed = time.time() - start_time
    time_trained = self.dir.time_trained[()] if "time_trained" in self.dir else 0
    self.dir.time_trained = time_elapsed + time_trained
    logging.info("Finished training.")

checkpoint

checkpoint()

Creates a checkpoint.

Validates on the validation data calling ~self.test. Validates on a training batch calling ~self.track_batch. Stores a checkpoint of the network, decoder and optimizer parameters using pytorch’s pickle function.

Stores
dir / chkpt_index.h5  # (List): numerical identifier of the checkpoint.
dir / chkpt_iter.h5  # (List): iteration at which this checkpoint was
                     # recorded.
dir / best_chkpt_index.h5  # (int): chkpt index at which the val loss is
                           # minimal.
dir / dt.h5  # (float): the current time constant of the dataset.
dir / chkpts / chkpt_<chkpt_index>  # (dict): the state dicts of the network,
                                    # decoder and optimizer.
Source code in flyvis/solver.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def checkpoint(self) -> None:
    """Creates a checkpoint.

    Validates on the validation data calling ~self.test.
    Validates on a training batch calling ~self.track_batch.
    Stores a checkpoint of the network, decoder and optimizer parameters using
    pytorch's pickle function.

    Stores:
        ```bash
        dir / chkpt_index.h5  # (List): numerical identifier of the checkpoint.
        dir / chkpt_iter.h5  # (List): iteration at which this checkpoint was
                             # recorded.
        dir / best_chkpt_index.h5  # (int): chkpt index at which the val loss is
                                   # minimal.
        dir / dt.h5  # (float): the current time constant of the dataset.
        dir / chkpts / chkpt_<chkpt_index>  # (dict): the state dicts of the network,
                                            # decoder and optimizer.
        ```
    """
    self._last_chkpt_ind += 1
    self._curr_chkpt_ind += 1

    # Tracking of validation loss and training batch loss.
    logging.info("Test on validation data.")
    val_loss = self.test(
        dataloader=self.task.val_data, subdir="validation", track_loss=True
    )
    logging.info("Test on validation batch.")
    _ = self.test(
        dataloader=self.task.val_batch, subdir="validation_batch", track_loss=True
    )
    logging.info("Test on training data.")
    _ = self.test(dataloader=self.task.train_data, subdir="training", track_loss=True)
    logging.info("Test on training batch.")
    _ = self.test(
        dataloader=self.task.train_batch, subdir="training_batch", track_loss=True
    )

    logging.info("Saving state dicts.")
    # Store state of pytorch modules.
    nn_state_dict = self.network.state_dict()
    dec_state_dict = {}
    if self.decoder:
        dec_state_dict = valmap(lambda x: x.state_dict(), self.decoder)
    chkpt = {
        "network": nn_state_dict,
        "decoder": dec_state_dict,
        "optim": self.optimizer.state_dict(),
        "time": time.ctime(),
        "val_loss": val_loss,
        "iteration": self.iteration - 1,
        "dt": self.task.dataset.dt,
    }
    if hasattr(self, "penalty"):
        chkpt.update(self.penalty._chkpt())
    torch.save(chkpt, self.checkpoint_path / f"chkpt_{self._last_chkpt_ind:05}")

    # Append chkpt index.
    self.checkpoints.append(self._last_chkpt_ind)
    self.dir.extend("chkpt_index", [self._last_chkpt_ind])
    self.dir.extend("chkpt_iter", [self.iteration - 1])
    self.dir.dt = self.task.dataset.dt

    # Overwrite best val loss.
    if val_loss < self._val_loss:
        self.dir.best_chkpt_index = self._last_chkpt_ind
        self._val_loss = val_loss

    logging.info("Checkpointed.")

test

test(dataloader, subdir='validation', track_loss=False, t_pre=0.25)

Tests the network on a given dataloader.

Parameters:

Name Type Description Default
dataloader DataLoader

Data to test on.

required
subdir str

Name of subdirectory. Defaults to ‘validation’.

'validation'
track_loss bool

Whether to store the loss in dir.subdir.

False
t_pre float

Warmup time before the stimulus starts.

0.25

Returns:

Type Description
float

Validation loss.

Stores
dir.<subdir>.loss_<task>  # (List): Loss per task, averaged over whole
                          # dataset.
dir.<subdir>.iteration  # (List): Iteration when this was called.
dir.<subdir>.loss  # (List): Average loss over tasks.
Source code in flyvis/solver.py
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
@torch.no_grad()
def test(
    self,
    dataloader: torch.utils.data.DataLoader,
    subdir: str = "validation",
    track_loss: bool = False,
    t_pre: float = 0.25,
) -> float:
    """Tests the network on a given dataloader.

    Args:
        dataloader: Data to test on.
        subdir: Name of subdirectory. Defaults to 'validation'.
        track_loss: Whether to store the loss in dir.subdir.
        t_pre: Warmup time before the stimulus starts.

    Returns:
        Validation loss.

    Stores:
        ```bash
        dir.<subdir>.loss_<task>  # (List): Loss per task, averaged over whole
                                  # dataset.
        dir.<subdir>.iteration  # (List): Iteration when this was called.
        dir.<subdir>.loss  # (List): Average loss over tasks.
        ```
    """
    self._eval()
    logging.info("Test")

    # Update hypterparams.
    self.scheduler(self.iteration)

    initial_state = self.network.steady_state(
        t_pre=t_pre,
        dt=self.task.dataset.dt,
        batch_size=dataloader.batch_size,
        value=0.5,
    )
    losses = {task: () for task in self.task.dataset.tasks}  # type: Dict[str, Tuple]

    with self.task.dataset.augmentation(False):
        for _, data in enumerate(dataloader):
            n_samples, n_frames, _, _ = data["lum"].shape
            self.network.stimulus.zero(n_samples, n_frames)

            self.network.stimulus.add_input(data["lum"])

            activity = self.network(
                self.network.stimulus(),
                self.task.dataset.dt,
                state=initial_state,
            )

            for task in self.task.dataset.tasks:
                y = data[task]
                y_est = self.decoder[task](activity)

                losses[task] += (
                    self.task.loss(y_est, y, task, **data.get("loss_kwargs", {}))
                    .detach()
                    .cpu()
                    .item(),
                )

    # track loss per task.
    avg_loss_per_task = {}
    for task in self.task.dataset.tasks:
        # average the loss over the whole dataset
        avg_loss_per_task[task] = np.mean(losses[task])
        if track_loss:
            self.dir[subdir].extend("loss" + "_" + task, [avg_loss_per_task[task]])

    # average the loss over all tasks with equal weight
    summed_loss = sum(avg_loss_per_task.values())
    val_loss = summed_loss / len(avg_loss_per_task)

    if track_loss:
        self.dir[subdir].extend("iteration", [self.iteration])
        self.dir[subdir].extend("loss", [val_loss])

    self._train()

    return val_loss

recover

recover(network=True, decoder=True, optimizer=True, penalty=True, checkpoint='best', validation_subdir='validation', loss_file_name='loss', strict=True, force=False)

Recovers the solver state from a checkpoint.

Parameters:

Name Type Description Default
network bool

Recover network parameters.

True
decoder bool

Recover decoder parameters.

True
optimizer bool

Recover optimizer parameters.

True
penalty bool

Recover penalty parameters.

True
checkpoint Union[int, str]

Index of the checkpoint to recover.

'best'
validation_subdir str

Name of the subdir to base the best checkpoint on.

'validation'
loss_file_name str

Name of the loss to base the best checkpoint on.

'loss'
strict bool

Whether to load the state dict of the decoders strictly.

True
force bool

Force recovery of checkpoint if _curr_chkpt_ind is already the same as the checkpoint index.

False
Source code in flyvis/solver.py
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
def recover(
    self,
    network: bool = True,
    decoder: bool = True,
    optimizer: bool = True,
    penalty: bool = True,
    checkpoint: Union[int, str] = "best",
    validation_subdir: str = "validation",
    loss_file_name: str = "loss",
    strict: bool = True,
    force: bool = False,
) -> None:
    """Recovers the solver state from a checkpoint.

    Args:
        network: Recover network parameters.
        decoder: Recover decoder parameters.
        optimizer: Recover optimizer parameters.
        penalty: Recover penalty parameters.
        checkpoint: Index of the checkpoint to recover.
        validation_subdir: Name of the subdir to base the best checkpoint on.
        loss_file_name: Name of the loss to base the best checkpoint on.
        strict: Whether to load the state dict of the decoders strictly.
        force: Force recovery of checkpoint if _curr_chkpt_ind is already
            the same as the checkpoint index.
    """
    checkpoints = resolve_checkpoints(
        self.dir, checkpoint, validation_subdir, loss_file_name
    )

    if checkpoint.index is None or not any((network, decoder, optimizer, penalty)):
        logging.info("No checkpoint found. Continuing with initialized parameters.")
        return

    if checkpoints.index == self._curr_chkpt_ind and not force:
        logging.info("Checkpoint already recovered.")
        return

    # Set the current and last checkpoint index. New checkpoints incrementally
    # increase the last checkpoint index.
    self._last_chkpt_ind = checkpoints.indices[-1]
    self._curr_chkpt_ind = checkpoints.index

    # Load checkpoint data.
    state_dict = torch.load(checkpoints.path)
    logging.info(f"Checkpoint {checkpoints.path} loaded.")

    self.iteration = state_dict.get("iteration", None)

    if "scheduler" in self._initialized:
        # Set the scheduler to the right iteration.
        self.scheduler(self.iteration)

    # The _val_loss variable is used to keep track of the best checkpoint according
    # to the evaluation routine during training.
    self._val_loss = state_dict.pop("val_loss", float("inf"))

    if network and "network" in self._initialized:
        recover_network(self.network, state_dict)
    if decoder and "decoder" in self._initialized:
        recover_decoder(self.decoder, state_dict, strict=strict)
    if optimizer and "optim" in self._initialized:
        recover_optimizer(self.optimizer, state_dict)
    if penalty and "penalties" in self._initialized:
        recover_penalty_optimizers(self.penalty.optimizers, state_dict)

    logging.info("Recovered modules.")

Penalty

Penalties on specific parameters.

Parameters:

Name Type Description Default
penalty Namespace

Penalty configuration.

required
network Network

The neural network.

required
Default config in config/penalizer/penalizer.yaml
activity_penalty:
    activity_baseline: 5.0
    activity_penalty: 0.1
    stop_iter: 150000
    below_baseline_penalty_weight: 1.0
    above_baseline_penalty_weight: 0.1
optim: SGD
Default config in config/network/node_config/bias/bias.yaml
type: RestingPotential
groupby:
    - type
initial_dist: Normal
mode: sample
requires_grad: true
seed: 0
mean: 0.5
std: 0.05
symmetric: []
penalize:
    activity: true

Attributes:

Name Type Description
config Namespace

Penalty configuration.

network Network

The neural network.

central_cells_index ndarray

Index of central cells.

parameter_config Namespace

Configuration for parameter penalties.

activity_penalty float

Penalty for activity.

activity_baseline float

Baseline for activity.

activity_penalty_stop_iter int

Iteration to stop activity penalty.

below_baseline_penalty_weight float

Weight for below baseline penalty.

above_baseline_penalty_weight float

Weight for above baseline penalty.

parameter_optim Optimizer

Optimizer for parameter penalties.

activity_optim Optimizer

Optimizer for activity penalties.

optimizers Dict[str, Optimizer]

Dictionary of optimizers.

param_list_func_pen list

List of parameters for function penalties.

param_list_act_pen list

List of parameters for activity penalties.

Examples:

Example configurations passed to the network object:

# Example 1: Penalize the resting potential of all cell types.
bias = Namespace(
    ... (other parameters)
    penalize=Namespace(activity=True),
)

# Example 2: add a weight decay penalty to all synapse strengths.
syn_strength = Namespace(
    ... (other parameters)
    penalize=Namespace(function="weight_decay", kwargs=dict(lambda=1e-3,)),
)
Source code in flyvis/solver.py
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
class Penalty:
    """Penalties on specific parameters.

    Args:
        penalty: Penalty configuration.
        network: The neural network.

    Note: Default config in config/penalizer/penalizer.yaml
        ```yaml
        activity_penalty:
            activity_baseline: 5.0
            activity_penalty: 0.1
            stop_iter: 150000
            below_baseline_penalty_weight: 1.0
            above_baseline_penalty_weight: 0.1
        optim: SGD
        ```

    Note: Default config in config/network/node_config/bias/bias.yaml
        ```yaml
        type: RestingPotential
        groupby:
            - type
        initial_dist: Normal
        mode: sample
        requires_grad: true
        seed: 0
        mean: 0.5
        std: 0.05
        symmetric: []
        penalize:
            activity: true
        ```

    Attributes:
        config (Namespace): Penalty configuration.
        network (Network): The neural network.
        central_cells_index (np.ndarray): Index of central cells.
        parameter_config (Namespace): Configuration for parameter penalties.
        activity_penalty (float): Penalty for activity.
        activity_baseline (float): Baseline for activity.
        activity_penalty_stop_iter (int): Iteration to stop activity penalty.
        below_baseline_penalty_weight (float): Weight for below baseline penalty.
        above_baseline_penalty_weight (float): Weight for above baseline penalty.
        parameter_optim (torch.optim.Optimizer): Optimizer for parameter penalties.
        activity_optim (torch.optim.Optimizer): Optimizer for activity penalties.
        optimizers (Dict[str, torch.optim.Optimizer]): Dictionary of optimizers.
        param_list_func_pen (list): List of parameters for function penalties.
        param_list_act_pen (list): List of parameters for activity penalties.

    Examples:
        Example configurations passed to the network object:

        ```python
        # Example 1: Penalize the resting potential of all cell types.
        bias = Namespace(
            ... (other parameters)
            penalize=Namespace(activity=True),
        )

        # Example 2: add a weight decay penalty to all synapse strengths.
        syn_strength = Namespace(
            ... (other parameters)
            penalize=Namespace(function="weight_decay", kwargs=dict(lambda=1e-3,)),
        )
        ```
    """

    def __init__(self, penalty: Namespace, network: Network):
        self.config = penalty
        self.network = network
        self.central_cells_index = self.network.connectome.central_cells_index[:]

        self.parameter_config = self.get_network_param_penalty_configs()
        self.optim_class = getattr(torch.optim, getattr(self.config, "optim", "SGD"))
        self.parameter_optim, self.activity_optim = None, None
        self.init_optim()
        self.init_hparams()

    def get_network_param_penalty_configs(self) -> Namespace:
        """Returns a dictionary of all network parameters configured to be penalized."""
        node_config = Namespace({
            "nodes_" + k: v.pop("penalize", None)
            for k, v in self.network.config.node_config.deepcopy().items()
        })
        edge_config = Namespace({
            "edges_" + k: v.pop("penalize", None)
            for k, v in self.network.config.edge_config.deepcopy().items()
        })
        return valfilter(
            lambda v: v is not None,
            Namespace(**node_config, **edge_config),
            factory=Namespace,
        )

    def init_optim(self) -> None:
        """Initialize the individual optimizer instances with the correct set of
        parameters.
        """
        self.optimizers = {}
        self.param_list_func_pen = []
        self.param_list_act_pen = []

        # collect the parameters that need to be penalized
        # either by a function or by activity
        for name, config in self.parameter_config.items():
            if "function" in config and any(list(config.kwargs.values())):
                self.param_list_func_pen.append(name)
            if getattr(config, "activity", False):
                self.param_list_act_pen.append(name)

        if self.param_list_func_pen:
            self.parameter_optim = self.optim_class(
                (getattr(self.network, param) for param in self.param_list_func_pen),
                lr=1e-3,
            )  # LR is overwritten by scheduler.
            self.optimizers.update(dict(parameter_optim=self.parameter_optim))

        if self.param_list_act_pen:
            self.activity_optim = self.optim_class(
                (getattr(self.network, param) for param in self.param_list_act_pen),
                lr=1e-3,
            )  # LR is overwritten by scheduler.
            self.optimizers.update(dict(activity_optim=self.activity_optim))

    def init_hparams(self) -> None:
        """Initialize the hyperparameters for the activity penalty."""
        config = self.config.get("activity_penalty", Namespace())

        # collecting activity penalty parameters
        (
            self.activity_penalty,
            self.activity_baseline,
            self.activity_penalty_stop_iter,
            self.below_baseline_penalty_weight,
            self.above_baseline_penalty_weight,
        ) = (
            config.get("activity_penalty", None),
            config.get("activity_baseline", None),
            config.get("stop_iter", None),
            config.get("below_baseline_penalty_weight", None),
            config.get("above_baseline_penalty_weight", None),
        )

        if (
            not any((
                self.activity_penalty,
                self.activity_baseline,
                self.below_baseline_penalty_weight,
                self.above_baseline_penalty_weight,
            ))
            and self.param_list_act_pen
        ):
            raise ValueError(
                "Activity penalty is enabled but no activity penalty parameters are "
                "set."
            )

    def __repr__(self):
        return (
            f"Penalty("
            f"parameter_config={self.parameter_config}, "
            f"activity_penalty={self.activity_penalty}, "
            f"activity_baseline={self.activity_baseline}, "
            f"activity_penalty_stop_iter={self.activity_penalty_stop_iter}, "
            f"below_baseline_penalty_weight={self.below_baseline_penalty_weight}, "
            f"above_baseline_penalty_weight={self.above_baseline_penalty_weight}, "
            f"optim_class={self.optim_class}"
            f")"
        )

    def __call__(self, activity: torch.Tensor, iteration: int) -> None:
        """Run all configured penalties.

        Args:
            activity: Network activity.
            iteration: Current iteration.
        """
        if self.parameter_optim:
            self.param_penalty_step()
        if self.activity_optim:
            if (
                self.activity_penalty_stop_iter is None
                or iteration < self.activity_penalty_stop_iter
            ):
                self.activity_penalty_step(activity, retain_graph=False)
            else:
                self.activity_optim = None

    def _chkpt(self) -> dict:
        """Returns a dictionary of all state dicts of all optimizer instances."""
        _chkpt = {}
        for key, optim in self.optimizers.items():
            if optim is not None:
                _chkpt[key] = optim.state_dict()
        return _chkpt

    def param_penalty_step(self) -> None:
        """Apply all the penalties on the individual parameters."""
        self.parameter_optim.zero_grad()
        penalty = 0
        for param, config in self.parameter_config.items():
            if getattr(config, "function", False):
                penalty += getattr(self, config.function)(param, config)
        penalty.backward()
        self.parameter_optim.step()
        self.network.clamp()

    def activity_penalty_step(
        self, activity: torch.Tensor, retain_graph: bool = True
    ) -> None:
        """Penalizes parameters tracked in activity_optim for too high or low activity.

        Encourages the nodes to have a higher or lower temporal mean activity,
        remedying dead or overactive neurons.

        Note:
            This assumes that the central cells are representative for all cells because
            of shared parameters across the cell types, which makes this reasonably
            efficient.

        Args:
            activity: Network activity of shape (n_samples, n_frames, n_nodes).
            retain_graph: Whether to retain the computation graph.
        """
        self.activity_optim.zero_grad()
        n_samples, n_frames, n_nodes = activity.shape
        # the temporal average activity of the central nodes after a couple of frames
        # to avoid the initial transient response
        activity_mean = activity[:, n_frames // 4 :, self.central_cells_index].mean(
            dim=1
        )  # (n_samples, n_node_types)
        penalty = (
            self.activity_penalty
            * (
                asymmetric_weighting(
                    self.activity_baseline - activity_mean,
                    self.below_baseline_penalty_weight,
                    self.above_baseline_penalty_weight,
                )
                ** 2
            ).mean()
        )
        penalty.backward(retain_graph=retain_graph)
        self.activity_optim.step()
        self.network.clamp()

    def weight_decay(self, param: str, config: Namespace) -> torch.Tensor:
        """Adds weight decay to the loss.

        Warning: Experimental

        Args:
            param: Name of the parameter.
            config: Configuration for the penalty.

        Returns:
            The weight decay penalty.

        """
        w = getattr(self.network, param)
        return config.kwargs["lambda"] * (w**2).sum()

    def prior(self, param: str, config: Namespace) -> torch.Tensor:
        """L2 penalty towards initial values.

        Warning: Experimental

        Args:
            param: Name of the parameter.
            config: Configuration for the penalty.

        Returns:
            The L2 penalty.

        TODO: this might be a convenient but suboptimal implementation when the initial
        values are cast to tensors at each iteration.
        """
        _key = "edge_config" if param.startswith("edges") else "node_config"
        prior = torch.tensor(
            getattr(self.network.config, _key)[
                param.replace("edges_", "").replace("nodes_", "")
            ].value,
            dtype=torch.float32,
        )
        return (
            config.kwargs["lambda"] * ((getattr(self.network, param) - prior) ** 2).sum()
        )

get_network_param_penalty_configs

get_network_param_penalty_configs()

Returns a dictionary of all network parameters configured to be penalized.

Source code in flyvis/solver.py
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
def get_network_param_penalty_configs(self) -> Namespace:
    """Returns a dictionary of all network parameters configured to be penalized."""
    node_config = Namespace({
        "nodes_" + k: v.pop("penalize", None)
        for k, v in self.network.config.node_config.deepcopy().items()
    })
    edge_config = Namespace({
        "edges_" + k: v.pop("penalize", None)
        for k, v in self.network.config.edge_config.deepcopy().items()
    })
    return valfilter(
        lambda v: v is not None,
        Namespace(**node_config, **edge_config),
        factory=Namespace,
    )

init_optim

init_optim()

Initialize the individual optimizer instances with the correct set of parameters.

Source code in flyvis/solver.py
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
def init_optim(self) -> None:
    """Initialize the individual optimizer instances with the correct set of
    parameters.
    """
    self.optimizers = {}
    self.param_list_func_pen = []
    self.param_list_act_pen = []

    # collect the parameters that need to be penalized
    # either by a function or by activity
    for name, config in self.parameter_config.items():
        if "function" in config and any(list(config.kwargs.values())):
            self.param_list_func_pen.append(name)
        if getattr(config, "activity", False):
            self.param_list_act_pen.append(name)

    if self.param_list_func_pen:
        self.parameter_optim = self.optim_class(
            (getattr(self.network, param) for param in self.param_list_func_pen),
            lr=1e-3,
        )  # LR is overwritten by scheduler.
        self.optimizers.update(dict(parameter_optim=self.parameter_optim))

    if self.param_list_act_pen:
        self.activity_optim = self.optim_class(
            (getattr(self.network, param) for param in self.param_list_act_pen),
            lr=1e-3,
        )  # LR is overwritten by scheduler.
        self.optimizers.update(dict(activity_optim=self.activity_optim))

init_hparams

init_hparams()

Initialize the hyperparameters for the activity penalty.

Source code in flyvis/solver.py
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
def init_hparams(self) -> None:
    """Initialize the hyperparameters for the activity penalty."""
    config = self.config.get("activity_penalty", Namespace())

    # collecting activity penalty parameters
    (
        self.activity_penalty,
        self.activity_baseline,
        self.activity_penalty_stop_iter,
        self.below_baseline_penalty_weight,
        self.above_baseline_penalty_weight,
    ) = (
        config.get("activity_penalty", None),
        config.get("activity_baseline", None),
        config.get("stop_iter", None),
        config.get("below_baseline_penalty_weight", None),
        config.get("above_baseline_penalty_weight", None),
    )

    if (
        not any((
            self.activity_penalty,
            self.activity_baseline,
            self.below_baseline_penalty_weight,
            self.above_baseline_penalty_weight,
        ))
        and self.param_list_act_pen
    ):
        raise ValueError(
            "Activity penalty is enabled but no activity penalty parameters are "
            "set."
        )

__call__

__call__(activity, iteration)

Run all configured penalties.

Parameters:

Name Type Description Default
activity Tensor

Network activity.

required
iteration int

Current iteration.

required
Source code in flyvis/solver.py
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
def __call__(self, activity: torch.Tensor, iteration: int) -> None:
    """Run all configured penalties.

    Args:
        activity: Network activity.
        iteration: Current iteration.
    """
    if self.parameter_optim:
        self.param_penalty_step()
    if self.activity_optim:
        if (
            self.activity_penalty_stop_iter is None
            or iteration < self.activity_penalty_stop_iter
        ):
            self.activity_penalty_step(activity, retain_graph=False)
        else:
            self.activity_optim = None

param_penalty_step

param_penalty_step()

Apply all the penalties on the individual parameters.

Source code in flyvis/solver.py
838
839
840
841
842
843
844
845
846
847
def param_penalty_step(self) -> None:
    """Apply all the penalties on the individual parameters."""
    self.parameter_optim.zero_grad()
    penalty = 0
    for param, config in self.parameter_config.items():
        if getattr(config, "function", False):
            penalty += getattr(self, config.function)(param, config)
    penalty.backward()
    self.parameter_optim.step()
    self.network.clamp()

activity_penalty_step

activity_penalty_step(activity, retain_graph=True)

Penalizes parameters tracked in activity_optim for too high or low activity.

Encourages the nodes to have a higher or lower temporal mean activity, remedying dead or overactive neurons.

Note

This assumes that the central cells are representative for all cells because of shared parameters across the cell types, which makes this reasonably efficient.

Parameters:

Name Type Description Default
activity Tensor

Network activity of shape (n_samples, n_frames, n_nodes).

required
retain_graph bool

Whether to retain the computation graph.

True
Source code in flyvis/solver.py
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
def activity_penalty_step(
    self, activity: torch.Tensor, retain_graph: bool = True
) -> None:
    """Penalizes parameters tracked in activity_optim for too high or low activity.

    Encourages the nodes to have a higher or lower temporal mean activity,
    remedying dead or overactive neurons.

    Note:
        This assumes that the central cells are representative for all cells because
        of shared parameters across the cell types, which makes this reasonably
        efficient.

    Args:
        activity: Network activity of shape (n_samples, n_frames, n_nodes).
        retain_graph: Whether to retain the computation graph.
    """
    self.activity_optim.zero_grad()
    n_samples, n_frames, n_nodes = activity.shape
    # the temporal average activity of the central nodes after a couple of frames
    # to avoid the initial transient response
    activity_mean = activity[:, n_frames // 4 :, self.central_cells_index].mean(
        dim=1
    )  # (n_samples, n_node_types)
    penalty = (
        self.activity_penalty
        * (
            asymmetric_weighting(
                self.activity_baseline - activity_mean,
                self.below_baseline_penalty_weight,
                self.above_baseline_penalty_weight,
            )
            ** 2
        ).mean()
    )
    penalty.backward(retain_graph=retain_graph)
    self.activity_optim.step()
    self.network.clamp()

weight_decay

weight_decay(param, config)

Adds weight decay to the loss.

Warning: Experimental

Parameters:

Name Type Description Default
param str

Name of the parameter.

required
config Namespace

Configuration for the penalty.

required

Returns:

Type Description
Tensor

The weight decay penalty.

Source code in flyvis/solver.py
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
def weight_decay(self, param: str, config: Namespace) -> torch.Tensor:
    """Adds weight decay to the loss.

    Warning: Experimental

    Args:
        param: Name of the parameter.
        config: Configuration for the penalty.

    Returns:
        The weight decay penalty.

    """
    w = getattr(self.network, param)
    return config.kwargs["lambda"] * (w**2).sum()

prior

prior(param, config)

L2 penalty towards initial values.

Warning: Experimental

Parameters:

Name Type Description Default
param str

Name of the parameter.

required
config Namespace

Configuration for the penalty.

required

Returns:

Type Description
Tensor

The L2 penalty.

TODO: this might be a convenient but suboptimal implementation when the initial values are cast to tensors at each iteration.

Source code in flyvis/solver.py
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
def prior(self, param: str, config: Namespace) -> torch.Tensor:
    """L2 penalty towards initial values.

    Warning: Experimental

    Args:
        param: Name of the parameter.
        config: Configuration for the penalty.

    Returns:
        The L2 penalty.

    TODO: this might be a convenient but suboptimal implementation when the initial
    values are cast to tensors at each iteration.
    """
    _key = "edge_config" if param.startswith("edges") else "node_config"
    prior = torch.tensor(
        getattr(self.network.config, _key)[
            param.replace("edges_", "").replace("nodes_", "")
        ].value,
        dtype=torch.float32,
    )
    return (
        config.kwargs["lambda"] * ((getattr(self.network, param) - prior) ** 2).sum()
    )

HyperParamScheduler

Schedules hyperparameters per training iteration.

Calling the scheduler instance updates the respective hyperparameters per training iteration.

Parameters:

Name Type Description Default
scheduler Namespace

Scheduler configuration.

required
network Optional[Network]

The neural network.

required
task Optional[Task]

The task being solved.

required
optimizer Optional[Optimizer]

The optimizer.

required
penalizer Optional[Penalty]

The penalty object.

required
Default config in config/scheduler/scheduler.yaml
lr_net:
    function: stepwise
    start: 5.0e-05
    stop: 5.0e-06
    steps: 10
lr_dec:
    function: stepwise
    start: 5.0e-05
    stop: 5.0e-06
    steps: 10
lr_pen:
    function: stepwise
    start: ${scheduler.lr_net.start}
    stop: ${scheduler.lr_net.stop}
    steps: 10
dt:
    function: stepwise
    start: 0.02
    stop: 0.02
    steps: 10
chkpt_every_epoch: 300

Attributes:

Name Type Description
config Namespace

Scheduler configuration.

scheduled_params Namespace

Scheduled parameters.

network Network

The neural network.

task Task

The task being solved.

optimizer Optimizer

The optimizer.

penalizer Penalty

The penalty object.

stop_iter int

Iteration to stop scheduling.

_current_iteration int

Current iteration.

Source code in flyvis/solver.py
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
class HyperParamScheduler:
    """Schedules hyperparameters per training iteration.

    Calling the scheduler instance updates the respective hyperparameters per training
    iteration.

    Args:
        scheduler: Scheduler configuration.
        network: The neural network.
        task: The task being solved.
        optimizer: The optimizer.
        penalizer: The penalty object.

    Note: Default config in config/scheduler/scheduler.yaml
        ```yaml
        lr_net:
            function: stepwise
            start: 5.0e-05
            stop: 5.0e-06
            steps: 10
        lr_dec:
            function: stepwise
            start: 5.0e-05
            stop: 5.0e-06
            steps: 10
        lr_pen:
            function: stepwise
            start: ${scheduler.lr_net.start}
            stop: ${scheduler.lr_net.stop}
            steps: 10
        dt:
            function: stepwise
            start: 0.02
            stop: 0.02
            steps: 10
        chkpt_every_epoch: 300
        ```

    Attributes:
        config (Namespace): Scheduler configuration.
        scheduled_params (Namespace): Scheduled parameters.
        network (Network): The neural network.
        task (Task): The task being solved.
        optimizer (torch.optim.Optimizer): The optimizer.
        penalizer (Penalty): The penalty object.
        stop_iter (int): Iteration to stop scheduling.
        _current_iteration (int): Current iteration.
    """

    def __init__(
        self,
        scheduler: Namespace,
        network: Optional[Network],
        task: Optional[Task],
        optimizer: Optional[torch.optim.Optimizer],
        penalizer: Optional[Penalty],
    ):
        self.config = scheduler.deepcopy()
        self.scheduled_params = self.config.deepcopy()
        self.network = network
        self.task = task
        self.optimizer = optimizer
        self.penalizer = penalizer

        self.stop_iter = scheduler.get("sched_stop_iter", self.task.n_iters)
        self._current_iteration = 0

        self.scheduled_params = Namespace()
        for key, param in self.config.items():
            try:
                schedfn_config = SchedulerFunction(**param)
                logging.info("Init schedule for %s", key)
            except TypeError:
                # lazy way to skip the parameter if it's not a SchedulerFunction
                continue

            # these are the parameters that are scheduled
            param.array = getattr(self, schedfn_config.function)(
                self.stop_iter,
                self.task.n_iters,
                param.start,
                param.stop,
                param.steps,
            )
            self.scheduled_params[key] = param

    def __call__(self, iteration: int) -> None:
        """Update hyperparameters for the given iteration.

        Args:
            iteration: Current iteration.
        """
        self._current_iteration = iteration
        for key, param in self.scheduled_params.items():
            try:
                setattr(self, key, param.array[iteration])
            except IndexError as e:
                if iteration >= self.stop_iter:
                    setattr(self, key, param.array[-1])
                else:
                    raise e
        logging.info(self)

    def __repr__(self):
        return "Scheduler. Iteration: {}/{}.\nCurrent values: {}.".format(
            self._current_iteration,
            self.task.n_iters,
            self._params(),
        )

    def _params(self) -> dict:
        """Get current parameter values.

        Returns:
            A dictionary of current parameter values.
        """
        params = {}
        for key, _param in self.scheduled_params.items():
            value = getattr(self, key)
            params[key] = value
        return params

    # -------- Setter methods called automatically by the scheduler

    @property
    def dt(self) -> float:
        return self.task.dataset.dt

    @dt.setter
    def dt(self, value: float) -> None:
        self.task.dataset.dt = value

    @property
    def lr_net(self) -> float:
        if self.optimizer is None:
            return
        return self.optimizer.param_groups[0]["lr"]

    @lr_net.setter
    def lr_net(self, value: float) -> None:
        if self.optimizer is None:
            return
        self.optimizer.param_groups[0]["lr"] = value

    @property
    def lr_dec(self) -> list:
        if self.optimizer is None:
            return
        return [param_group["lr"] for param_group in self.optimizer.param_groups[1:]]

    @lr_dec.setter
    def lr_dec(self, value: float) -> None:
        if self.optimizer is None:
            return
        for param_group in self.optimizer.param_groups[1:]:
            param_group["lr"] = value

    @property
    def lr_pen(self) -> list:
        if self.penalizer is None:
            return
        return [
            param_group["lr"]
            for optim in self.penalizer.optimizers.values()
            for param_group in optim.param_groups
        ]

    @lr_pen.setter
    def lr_pen(self, value: float) -> None:
        if self.penalizer is None:
            return
        for optim in self.penalizer.optimizers.values():
            if optim is not None:
                for param_group in optim.param_groups:
                    param_group["lr"] = value

    @property
    def relu_leak(self) -> float:
        if self.network is None:
            return
        return getattr(self.network.dynamics.activation, "negative_slope", None)

    @relu_leak.setter
    def relu_leak(self, value: float) -> None:
        if self.network is None:
            return
        if hasattr(self.network.dynamics.activation, "negative_slope"):
            self.network.dynamics.activation.negative_slope = value

    @property
    def activity_penalty(self) -> float:
        if self.penalizer is None:
            return
        return self.penalizer.activity_penalty

    @activity_penalty.setter
    def activity_penalty(self, value: float) -> None:
        if self.penalizer is None:
            return
        self.penalizer.activity_penalty = value

    # -------- Decay Options

    @staticmethod
    def linear(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate a linear schedule from start to stop value."""
        f = np.linspace(start, stop, stop_iter)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

    @staticmethod
    def stepwise(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate a stepwise schedule from start to stop value."""
        f = np.linspace(start, stop, steps).repeat(stop_iter / steps)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

    @staticmethod
    def stepwise_2ndhalf(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate a stepwise schedule that decays in the second half of iterations."""
        f = np.linspace(start, stop, steps).repeat((stop_iter / 2) / steps)
        return np.pad(f, (n_iterations - len(f) + 1, 0), constant_values=start)

    @staticmethod
    def stepwise_half(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate a stepwise schedule that decays in the first half of iterations."""
        f = np.linspace(start, stop, steps).repeat((stop_iter / 2) / steps)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

    @staticmethod
    def steponential(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate an exponential stepwise schedule from start to stop value."""
        x = (1 / stop) ** (1 / steps)
        values = start / x ** np.arange(steps)
        f = values.repeat(stop_iter / steps)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=values[-1])

    @staticmethod
    def steponential_inv(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate an inverse exponential stepwise schedule."""
        _start = steps
        _stop = 0
        x = 1 / _stop
        values = _start / x ** np.arange(steps)
        f = values.repeat(stop_iter / steps)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=values[-1])

    @staticmethod
    def exponential(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate an exponential schedule from start to stop value."""
        tau = -stop_iter / (np.log(stop + 1e-15) - np.log(start))
        f = start * np.exp(-np.arange(stop_iter) / tau)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

    @staticmethod
    def exponential_half(
        stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
    ) -> np.ndarray:
        """Generate exponential schedule that decays in the first half of iterations."""
        tau = -int((stop_iter / 2)) / (np.log(stop) - np.log(start))
        f = start * np.exp(-np.arange(int(stop_iter / 2)) / tau)
        return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

__call__

__call__(iteration)

Update hyperparameters for the given iteration.

Parameters:

Name Type Description Default
iteration int

Current iteration.

required
Source code in flyvis/solver.py
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def __call__(self, iteration: int) -> None:
    """Update hyperparameters for the given iteration.

    Args:
        iteration: Current iteration.
    """
    self._current_iteration = iteration
    for key, param in self.scheduled_params.items():
        try:
            setattr(self, key, param.array[iteration])
        except IndexError as e:
            if iteration >= self.stop_iter:
                setattr(self, key, param.array[-1])
            else:
                raise e
    logging.info(self)

linear staticmethod

linear(stop_iter, n_iterations, start, stop, steps)

Generate a linear schedule from start to stop value.

Source code in flyvis/solver.py
1134
1135
1136
1137
1138
1139
1140
@staticmethod
def linear(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate a linear schedule from start to stop value."""
    f = np.linspace(start, stop, stop_iter)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

stepwise staticmethod

stepwise(stop_iter, n_iterations, start, stop, steps)

Generate a stepwise schedule from start to stop value.

Source code in flyvis/solver.py
1142
1143
1144
1145
1146
1147
1148
@staticmethod
def stepwise(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate a stepwise schedule from start to stop value."""
    f = np.linspace(start, stop, steps).repeat(stop_iter / steps)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

stepwise_2ndhalf staticmethod

stepwise_2ndhalf(stop_iter, n_iterations, start, stop, steps)

Generate a stepwise schedule that decays in the second half of iterations.

Source code in flyvis/solver.py
1150
1151
1152
1153
1154
1155
1156
@staticmethod
def stepwise_2ndhalf(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate a stepwise schedule that decays in the second half of iterations."""
    f = np.linspace(start, stop, steps).repeat((stop_iter / 2) / steps)
    return np.pad(f, (n_iterations - len(f) + 1, 0), constant_values=start)

stepwise_half staticmethod

stepwise_half(stop_iter, n_iterations, start, stop, steps)

Generate a stepwise schedule that decays in the first half of iterations.

Source code in flyvis/solver.py
1158
1159
1160
1161
1162
1163
1164
@staticmethod
def stepwise_half(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate a stepwise schedule that decays in the first half of iterations."""
    f = np.linspace(start, stop, steps).repeat((stop_iter / 2) / steps)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

steponential staticmethod

steponential(stop_iter, n_iterations, start, stop, steps)

Generate an exponential stepwise schedule from start to stop value.

Source code in flyvis/solver.py
1166
1167
1168
1169
1170
1171
1172
1173
1174
@staticmethod
def steponential(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate an exponential stepwise schedule from start to stop value."""
    x = (1 / stop) ** (1 / steps)
    values = start / x ** np.arange(steps)
    f = values.repeat(stop_iter / steps)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=values[-1])

steponential_inv staticmethod

steponential_inv(stop_iter, n_iterations, start, stop, steps)

Generate an inverse exponential stepwise schedule.

Source code in flyvis/solver.py
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
@staticmethod
def steponential_inv(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate an inverse exponential stepwise schedule."""
    _start = steps
    _stop = 0
    x = 1 / _stop
    values = _start / x ** np.arange(steps)
    f = values.repeat(stop_iter / steps)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=values[-1])

exponential staticmethod

exponential(stop_iter, n_iterations, start, stop, steps)

Generate an exponential schedule from start to stop value.

Source code in flyvis/solver.py
1188
1189
1190
1191
1192
1193
1194
1195
@staticmethod
def exponential(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate an exponential schedule from start to stop value."""
    tau = -stop_iter / (np.log(stop + 1e-15) - np.log(start))
    f = start * np.exp(-np.arange(stop_iter) / tau)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

exponential_half staticmethod

exponential_half(stop_iter, n_iterations, start, stop, steps)

Generate exponential schedule that decays in the first half of iterations.

Source code in flyvis/solver.py
1197
1198
1199
1200
1201
1202
1203
1204
@staticmethod
def exponential_half(
    stop_iter: int, n_iterations: int, start: float, stop: float, steps: int
) -> np.ndarray:
    """Generate exponential schedule that decays in the first half of iterations."""
    tau = -int((stop_iter / 2)) / (np.log(stop) - np.log(start))
    f = start * np.exp(-np.arange(int(stop_iter / 2)) / tau)
    return np.pad(f, (0, n_iterations - len(f) + 1), constant_values=stop)

SchedulerFunction dataclass

Configuration for a scheduler function.

Attributes:

Name Type Description
start float

Start value.

stop float

Stop value.

steps int

Number of steps.

function str

Name of the scheduling function.

Source code in flyvis/solver.py
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
@dataclass
class SchedulerFunction:
    """Configuration for a scheduler function.

    Attributes:
        start (float): Start value.
        stop (float): Stop value.
        steps (int): Number of steps.
        function (str): Name of the scheduling function.
    """

    start: float
    stop: float
    steps: int
    function: str