Skip to content

Sintel

Rendering

flyvis.datasets.sintel.RenderedSintel

Bases: Directory

Rendering and referencing rendered sintel data.

Parameters:

Name Type Description Default
tasks List[str]

List of tasks to include in the rendering. May include ‘flow’ or ‘depth’.

['flow']
boxfilter Dict[str, int]

Key word arguments for the BoxEye filter.

dict(extent=15, kernel_size=13)
vertical_splits int

Number of vertical splits of each frame.

3
n_frames int

Number of frames to render for each sequence.

19
center_crop_fraction float

Fraction of the image to keep after cropping.

0.7
unittest bool

If True, only renders a single sequence.

False

Attributes:

Name Type Description
config

Configuration parameters used for rendering.

sequence_<id>_<name>_split_<j>/lum ArrayFile

Rendered luminance data (frames, 1, hexals).

sequence_<id>_<name>_split_<j>/flow ArrayFile

Rendered flow data (frames, 2, hexals).

sequence_<id>_<name>_split_<j>/depth ArrayFile

Rendered depth data (frames, 1, hexals).

Source code in flyvis/datasets/sintel.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
@root(renderings_dir)
class RenderedSintel(Directory):
    """Rendering and referencing rendered sintel data.

    Args:
        tasks: List of tasks to include in the rendering. May include 'flow' or 'depth'.
        boxfilter: Key word arguments for the BoxEye filter.
        vertical_splits: Number of vertical splits of each frame.
        n_frames: Number of frames to render for each sequence.
        center_crop_fraction: Fraction of the image to keep after cropping.
        unittest: If True, only renders a single sequence.

    Attributes:
        config: Configuration parameters used for rendering.
        sequence_<id>_<name>_split_<j>/lum (ArrayFile):
            Rendered luminance data (frames, 1, hexals).
        sequence_<id>_<name>_split_<j>/flow (ArrayFile):
            Rendered flow data (frames, 2, hexals).
        sequence_<id>_<name>_split_<j>/depth (ArrayFile):
            Rendered depth data (frames, 1, hexals).
    """

    def __init__(
        self,
        tasks: List[str] = ["flow"],
        boxfilter: Dict[str, int] = dict(extent=15, kernel_size=13),
        vertical_splits: int = 3,
        n_frames: int = 19,
        center_crop_fraction: float = 0.7,
        unittest: bool = False,
        sintel_path: Optional[Union[str, Path]] = None,
    ):
        # Convert sintel_path to Path object if it's not None
        sintel_path = (
            Path(sintel_path) if sintel_path else download_sintel(depth="depth" in tasks)
        )
        boxfilter = BoxEye(**boxfilter)

        lum_paths = (sintel_path / "training/final").iterdir()

        for i, lum_path in enumerate(tqdm(sorted(lum_paths), desc="Rendering")):
            # Renders all frames for all sequences which have more than n_frames
            if len(list(lum_path.iterdir())) - 1 >= n_frames:
                flow_path = sintel_path / "training/flow" / lum_path.name
                depth_path = sintel_path / "training/depth" / lum_path.name

                # -- Flow from naturalistic input ------------------------------
                # Y[n] = f(X[1], ..., X[n])
                # n X   Y
                # 0 [x]  n.e.  # not in data
                # 1 [1]  [1]
                # 2 [2]  [2]
                # ...
                # n [n]  [n]

                # (frames, height, width)
                lum = load_sequence(
                    lum_path,
                    sample_lum,
                    start=1,
                    end=None if not unittest else 4,
                )
                # (splits, frames, height, width)
                lum_split = split(
                    lum,
                    boxfilter.min_frame_size[1] + 2 * boxfilter.kernel_size,
                    vertical_splits,
                    center_crop_fraction,
                )
                # (splits, frames, 1, #hexals)
                lum_hex = boxfilter(lum_split).cpu()

                # (frames, 2, height, width)
                flow = load_sequence(
                    flow_path, sample_flow, end=None if not unittest else 3
                )
                # (splits, frames, 2, height, width)
                flow_split = split(
                    flow,
                    boxfilter.min_frame_size[1] + 2 * boxfilter.kernel_size,
                    vertical_splits,
                    center_crop_fraction,
                )
                # (splits, frames, 2, #hexals)
                flow_hex = torch.cat(
                    (
                        boxfilter(flow_split[:, :, 0], ftype="sum"),
                        boxfilter(flow_split[:, :, 1], ftype="sum"),
                    ),
                    dim=2,
                ).cpu()
                if "depth" in tasks:
                    # (frames, height, width)
                    depth = load_sequence(
                        depth_path,
                        sample_depth,
                        start=1,
                        end=None if not unittest else 4,
                    )
                    # (splits, frames, height, width)
                    depth_splits = split(
                        depth,
                        boxfilter.min_frame_size[1] + 2 * boxfilter.kernel_size,
                        vertical_splits,
                        center_crop_fraction,
                    )
                    # (splits, frames, 1, #hexals)
                    depth_hex = boxfilter(depth_splits, ftype="median").cpu()

                # -- store -----------------------------------------------------
                for j in range(lum_hex.shape[0]):
                    path = f"sequence_{i:02d}_{lum_path.name}_split_{j:02d}"

                    self[f"{path}/lum"] = lum_hex[j]

                    self[f"{path}/flow"] = flow_hex[j]

                    if "depth" in tasks:
                        self[f"{path}/depth"] = depth_hex[j]
            if unittest:
                break

    def __call__(self, seq_id: int) -> Dict[str, np.ndarray]:
        """Returns all rendered data for a given sequence index.

        Args:
            seq_id: Index of the sequence to retrieve.

        Returns:
            Dictionary containing the rendered data for the specified sequence.
        """
        # Load all stored h5 files into memory.
        data = self[sorted(self)[seq_id]]
        return {key: data[key][:] for key in sorted(data)}

__call__

__call__(seq_id)

Returns all rendered data for a given sequence index.

Parameters:

Name Type Description Default
seq_id int

Index of the sequence to retrieve.

required

Returns:

Type Description
Dict[str, ndarray]

Dictionary containing the rendered data for the specified sequence.

Source code in flyvis/datasets/sintel.py
168
169
170
171
172
173
174
175
176
177
178
179
def __call__(self, seq_id: int) -> Dict[str, np.ndarray]:
    """Returns all rendered data for a given sequence index.

    Args:
        seq_id: Index of the sequence to retrieve.

    Returns:
        Dictionary containing the rendered data for the specified sequence.
    """
    # Load all stored h5 files into memory.
    data = self[sorted(self)[seq_id]]
    return {key: data[key][:] for key in sorted(data)}

Datasets

flyvis.datasets.sintel.MultiTaskSintel

Bases: MultiTaskDataset

Sintel dataset.

Parameters:

Name Type Description Default
tasks List[str]

List of tasks to include. May include ‘flow’, ‘lum’, or ‘depth’.

['flow']
boxfilter Dict[str, int]

Key word arguments for the BoxEye filter.

dict(extent=15, kernel_size=13)
vertical_splits int

Number of vertical splits of each frame.

3
n_frames int

Number of frames to render for each sequence.

19
center_crop_fraction float

Fraction of the image to keep after cropping.

0.7
dt float

Sampling and integration time constant.

1 / 50
augment bool

Turns augmentation on and off.

True
random_temporal_crop bool

Randomly crops a temporal window of length n_frames from each sequence.

True
all_frames bool

If True, all frames are returned. If False, only n_frames. Takes precedence over random_temporal_crop.

False
resampling bool

If True, piecewise-constant resamples the input sequence to the target framerate (1/dt).

True
interpolate bool

If True, linearly interpolates the target sequence to the target framerate (1/dt).

True
p_flip float

Probability of flipping the sequence across hexagonal axes.

0.5
p_rot float

Probability of rotating the sequence by n*60 degrees.

5 / 6
contrast_std float

Standard deviation of the contrast augmentation.

0.2
brightness_std float

Standard deviation of the brightness augmentation.

0.1
gaussian_white_noise float

Standard deviation of the pixel-wise gaussian white noise.

0.08
gamma_std Optional[float]

Standard deviation of the gamma augmentation.

None
_init_cache bool

If True, caches the dataset in memory.

True
unittest bool

If True, only renders a single sequence.

False
flip_axes List[int]

List of axes to flip over.

[0, 1]

Attributes:

Name Type Description
dt float

Sampling and integration time constant.

t_pre float

Warmup time.

t_post float

Cooldown time.

tasks List[str]

List of all tasks.

valid_tasks List[str]

List of valid task names.

Raises:

Type Description
ValueError

If any element in tasks is invalid.

Source code in flyvis/datasets/sintel.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
class MultiTaskSintel(MultiTaskDataset):
    """Sintel dataset.

    Args:
        tasks: List of tasks to include. May include 'flow', 'lum', or 'depth'.
        boxfilter: Key word arguments for the BoxEye filter.
        vertical_splits: Number of vertical splits of each frame.
        n_frames: Number of frames to render for each sequence.
        center_crop_fraction: Fraction of the image to keep after cropping.
        dt: Sampling and integration time constant.
        augment: Turns augmentation on and off.
        random_temporal_crop: Randomly crops a temporal window of length `n_frames` from
            each sequence.
        all_frames: If True, all frames are returned. If False, only `n_frames`. Takes
            precedence over `random_temporal_crop`.
        resampling: If True, piecewise-constant resamples the input sequence to the
            target framerate (1/dt).
        interpolate: If True, linearly interpolates the target sequence to the target
            framerate (1/dt).
        p_flip: Probability of flipping the sequence across hexagonal axes.
        p_rot: Probability of rotating the sequence by n*60 degrees.
        contrast_std: Standard deviation of the contrast augmentation.
        brightness_std: Standard deviation of the brightness augmentation.
        gaussian_white_noise: Standard deviation of the pixel-wise gaussian white noise.
        gamma_std: Standard deviation of the gamma augmentation.
        _init_cache: If True, caches the dataset in memory.
        unittest: If True, only renders a single sequence.
        flip_axes: List of axes to flip over.

    Attributes:
        dt (float): Sampling and integration time constant.
        t_pre (float): Warmup time.
        t_post (float): Cooldown time.
        tasks (List[str]): List of all tasks.
        valid_tasks (List[str]): List of valid task names.

    Raises:
        ValueError: If any element in tasks is invalid.
    """

    original_framerate: int = 24
    dt: float = 1 / 50
    t_pre: float = 0.0
    t_post: float = 0.0
    tasks: List[str] = []
    valid_tasks: List[str] = ["lum", "flow", "depth"]

    def __init__(
        self,
        tasks: List[str] = ["flow"],
        boxfilter: Dict[str, int] = dict(extent=15, kernel_size=13),
        vertical_splits: int = 3,
        n_frames: int = 19,
        center_crop_fraction: float = 0.7,
        dt: float = 1 / 50,
        augment: bool = True,
        random_temporal_crop: bool = True,
        all_frames: bool = False,
        resampling: bool = True,
        interpolate: bool = True,
        p_flip: float = 0.5,
        p_rot: float = 5 / 6,
        contrast_std: float = 0.2,
        brightness_std: float = 0.1,
        gaussian_white_noise: float = 0.08,
        gamma_std: Optional[float] = None,
        _init_cache: bool = True,
        unittest: bool = False,
        flip_axes: List[int] = [0, 1],
        sintel_path: Optional[Union[str, Path]] = None,
    ):
        def check_tasks(tasks):
            invalid_tasks = [x for x in tasks if x not in self.valid_tasks]
            if invalid_tasks:
                raise ValueError(f"invalid tasks {invalid_tasks}")

            tasks = [v for v in self.valid_tasks if v in tasks]  # sort
            # because the input 'lum' is always required
            data_keys = tasks if "lum" in tasks else ["lum", *tasks]
            return tasks, data_keys

        self.tasks, self.data_keys = check_tasks(tasks)
        self.interpolate = interpolate
        self.n_frames = n_frames if not unittest else 3
        self.dt = dt

        self.all_frames = all_frames
        self.resampling = resampling

        self.boxfilter = boxfilter
        self.extent = boxfilter["extent"]
        assert vertical_splits >= 1
        self.vertical_splits = vertical_splits
        self.center_crop_fraction = center_crop_fraction

        self.p_flip = p_flip
        self.p_rot = p_rot
        self.contrast_std = contrast_std
        self.brightness_std = brightness_std
        self.gaussian_white_noise = gaussian_white_noise
        self.gamma_std = gamma_std
        self.random_temporal_crop = random_temporal_crop
        self.flip_axes = flip_axes
        self.fix_augmentation_params = False

        self.init_augmentation()
        self._augmentations_are_initialized = True
        # note: self.augment is a property with a setter that relies on
        # _augmentations_are_initialized
        self.augment = augment

        self.unittest = unittest

        # Download Sintel once and reuse the path
        self.sintel_path = (
            Path(sintel_path) if sintel_path else download_sintel(depth="depth" in tasks)
        )

        self.rendered = RenderedSintel(
            tasks=tasks,
            boxfilter=boxfilter,
            vertical_splits=vertical_splits,
            n_frames=n_frames,
            center_crop_fraction=center_crop_fraction,
            unittest=unittest,
            sintel_path=self.sintel_path,
        )

        self.meta = sintel_meta(
            self.rendered, self.sintel_path, n_frames, vertical_splits, "depth" in tasks
        )

        self.config = Namespace(
            tasks=tasks,
            interpolate=interpolate,
            n_frames=n_frames,
            dt=dt,
            augment=augment,
            all_frames=all_frames,
            resampling=resampling,
            random_temporal_crop=random_temporal_crop,
            boxfilter=boxfilter,
            vertical_splits=vertical_splits,
            p_flip=p_flip,
            p_rot=p_rot,
            contrast_std=contrast_std,
            brightness_std=brightness_std,
            gaussian_white_noise=gaussian_white_noise,
            gamma_std=gamma_std,
            center_crop_fraction=center_crop_fraction,
            flip_axes=flip_axes,
        )

        self.arg_df = pd.DataFrame(
            dict(
                index=np.arange(len(self.rendered)),
                original_index=self.meta.sequence_indices.repeat(vertical_splits),
                name=sorted(self.rendered.keys()),
                original_n_frames=self.meta.frames_per_scene.repeat(vertical_splits),
            )
        )

        if _init_cache:
            self.init_cache()

    def init_cache(self) -> None:
        """Initialize the cache with preprocessed sequences."""
        self.cached_sequences = [
            {
                key: torch.tensor(val, dtype=torch.float32)
                for key, val in self.rendered(seq_id).items()
                if key in self.data_keys
            }
            for seq_id in range(len(self))
        ]

    def __repr__(self) -> str:
        repr = f"{self.__class__.__name__} with {len(self)} sequences.\n"
        repr += "See docs, arg_df and meta for more details.\n"
        return repr

    @property
    def docs(self) -> str:
        print(self.__doc__)

    def __setattr__(self, name: str, value: Any) -> None:
        """Custom attribute setter to handle special cases and update augmentation.

        Args:
            name: Name of the attribute to set.
            value: Value to set the attribute to.

        Raises:
            AttributeError: If trying to change framerate or rendered initialization
                attributes.
        """
        # some changes have no effect cause they are fixed, or set by the pre-rendering
        if name == "framerate":
            raise AttributeError("cannot change framerate")
        if hasattr(self, "rendered") and name in self.rendered.config:
            raise AttributeError("cannot change attribute of rendered initialization")
        super().__setattr__(name, value)
        # also update augmentation because it may already be initialized
        if getattr(self, "_augmentations_are_initialized", False):
            self.update_augmentation(name, value)

    def init_augmentation(self) -> None:
        """Initialize augmentation callables."""
        self.temporal_crop = CropFrames(
            self.n_frames, all_frames=self.all_frames, random=self.random_temporal_crop
        )
        self.jitter = ContrastBrightness(
            contrast_std=self.contrast_std, brightness_std=self.brightness_std
        )
        self.rotate = HexRotate(self.extent, p_rot=self.p_rot)
        self.flip = HexFlip(self.extent, p_flip=self.p_flip, flip_axes=self.flip_axes)
        self.noise = PixelNoise(self.gaussian_white_noise)

        self.piecewise_resample = Interpolate(
            self.original_framerate, 1 / self.dt, mode="nearest-exact"
        )
        self.linear_interpolate = Interpolate(
            self.original_framerate,
            1 / self.dt,
            mode="linear",
        )
        self.gamma_correct = GammaCorrection(1, self.gamma_std)

    def update_augmentation(self, name: str, value: Any) -> None:
        """Update augmentation parameters based on attribute changes.

        Args:
            name: Name of the attribute that changed.
            value: New value of the attribute.
        """
        if name == "dt":
            self.piecewise_resample.target_framerate = 1 / value
            self.linear_interpolate.target_framerate = 1 / value
        if name in ["all_frames", "random_temporal_crop"]:
            self.temporal_crop.all_frames = value
            self.temporal_crop.random = value
        if name in ["contrast_std", "brightness_std"]:
            self.jitter.contrast_std = value
            self.jitter.brightness_std = value
        if name == "p_rot":
            self.rotate.p_rot = value
        if name == "p_flip":
            self.flip.p_flip = value
        if name == "gaussian_white_noise":
            self.noise.std = value
        if name == "gamma_std":
            self.gamma_correct.std = value

    def set_augmentation_params(
        self,
        n_rot: Optional[int] = None,
        flip_axis: Optional[int] = None,
        contrast_factor: Optional[float] = None,
        brightness_factor: Optional[float] = None,
        gaussian_white_noise: Optional[float] = None,
        gamma: Optional[float] = None,
        start_frame: Optional[int] = None,
        total_sequence_length: Optional[int] = None,
    ) -> None:
        """Set augmentation callable parameters.

        Info:
            Called for each call of get_item.

        Args:
            n_rot: Number of rotations to apply.
            flip_axis: Axis to flip over.
            contrast_factor: Contrast factor for jitter augmentation.
            brightness_factor: Brightness factor for jitter augmentation.
            gaussian_white_noise: Standard deviation for noise augmentation.
            gamma: Gamma value for gamma correction.
            start_frame: Starting frame for temporal crop.
            total_sequence_length: Total length of the sequence.
        """
        if not self.fix_augmentation_params:
            self.rotate.set_or_sample(n_rot)
            self.flip.set_or_sample(flip_axis)
            self.jitter.set_or_sample(contrast_factor, brightness_factor)
            self.noise.set_or_sample(gaussian_white_noise)
            self.gamma_correct.set_or_sample(gamma)
            self.temporal_crop.set_or_sample(
                start=start_frame, total_sequence_length=total_sequence_length
            )

    def get_item(self, key: int) -> Dict[str, torch.Tensor]:
        """Return a dataset sample.

        Args:
            key: Index of the sample to retrieve.

        Returns:
            Dictionary containing the augmented sample data.
        """
        return self.apply_augmentation(self.cached_sequences[key])

    @contextmanager
    def augmentation(self, abool: bool):
        """Context manager to turn augmentation on or off in a code block.

        Args:
            abool: Boolean value to set augmentation state.

        Example:
            ```python
            with dataset.augmentation(True):
                for i, data in enumerate(dataloader):
                    ...  # all data is augmented
            ```
        """
        augmentations = [
            "temporal_crop",
            "jitter",
            "rotate",
            "flip",
            "noise",
            "piecewise_resample",
            "linear_interpolate",
            "gamma_correct",
        ]
        states = {key: getattr(self, key).augment for key in augmentations}
        _augment = self.augment
        try:
            self.augment = abool
            yield
        finally:
            self.augment = _augment
            for key in augmentations:
                getattr(self, key).augment = states[key]

    @property
    def augment(self) -> bool:
        """Get the current augmentation state."""
        return self._augment

    @augment.setter
    def augment(self, value: bool) -> None:
        """Set the augmentation state and update augmentation callables.

        Args:
            value: Boolean value to set augmentation state.
        """
        self._augment = value
        if not self._augmentations_are_initialized:
            return
        # note: random_temporal_crop can override augment=True
        self.temporal_crop.random = self.random_temporal_crop if value else False
        self.jitter.augment = value
        self.rotate.augment = value
        self.flip.augment = value
        self.noise.augment = value
        # note: these two are not affected by augment
        self.piecewise_resample.augment = self.resampling
        self.linear_interpolate.augment = self.interpolate
        self.gamma_correct.augment = value

    def apply_augmentation(
        self,
        data: Dict[str, torch.Tensor],
        n_rot: Optional[int] = None,
        flip_axis: Optional[int] = None,
        contrast_factor: Optional[float] = None,
        brightness_factor: Optional[float] = None,
        gaussian_white_noise: Optional[float] = None,
        gamma: Optional[float] = None,
    ) -> Dict[str, torch.Tensor]:
        """Apply augmentation to a sample from the dataset.

        Args:
            data: Dictionary containing the sample data.
            n_rot: Number of rotations to apply.
            flip_axis: Axis to flip over.
            contrast_factor: Contrast factor for jitter augmentation.
            brightness_factor: Brightness factor for jitter augmentation.
            gaussian_white_noise: Standard deviation for noise augmentation.
            gamma: Gamma value for gamma correction.

        Returns:
            Dictionary containing the augmented sample data.
        """

        self.set_augmentation_params(
            n_rot=n_rot,
            flip_axis=flip_axis,
            contrast_factor=contrast_factor,
            brightness_factor=brightness_factor,
            gaussian_white_noise=gaussian_white_noise,
            gamma=gamma,
            start_frame=None,
            total_sequence_length=data["lum"].shape[0],
        )

        def transform_lum(lum):
            return self.piecewise_resample(
                self.rotate(
                    self.flip(
                        self.jitter(
                            self.noise(self.temporal_crop(lum)),
                        ),
                    )
                )
            )

        def transform_target(target):
            if self.interpolate:
                return self.linear_interpolate(
                    self.rotate(self.flip(self.temporal_crop(target)))
                )
            return self.piecewise_resample(
                self.rotate(self.flip(self.temporal_crop(target)))
            )

        return {
            **{"lum": transform_lum(data["lum"])},
            **{
                target: transform_target(data[target])
                for target in self.tasks
                if target in ["flow", "depth"]
            },
        }

    def original_sequence_index(self, key: int) -> int:
        """Get the original sequence index from an index of the split.

        Args:
            key: Index of the split.

        Returns:
            Original sequence index.

        Raises:
            ValueError: If the key is not found in splits.
        """
        for index, splits in self.meta.sequence_index_to_splits.items():
            if key in splits:
                return index
        raise ValueError(f"key {key} not found in splits")

    def cartesian_sequence(
        self,
        key: int,
        vertical_splits: Optional[int] = None,
        outwidth: int = 716,
        center_crop_fraction: Optional[float] = None,
        sampling: slice = slice(1, None, None),
    ) -> np.ndarray:
        """Return the cartesian sequence of a fly eye rendered sequence.

        Args:
            key: Index of the sequence.
            vertical_splits: Number of vertical splits to apply.
            outwidth: Output width of the sequence.
            center_crop_fraction: Fraction of the image to keep after cropping.
            sampling: Slice object for sampling frames.

        Returns:
            Numpy array containing the cartesian sequence.
        """
        # we want to retrieve the original scene which is possibly split
        # into multiple ones
        key = self.original_sequence_index(key)
        lum_path = self.meta.lum_paths[key]
        images = np.array([
            sample_lum(path) for path in sorted(lum_path.iterdir())[sampling]
        ])
        return split(
            images,
            outwidth,
            vertical_splits or self.vertical_splits,
            center_crop_fraction or self.center_crop_fraction,
        )

    def cartesian_flow(
        self,
        key: int,
        vertical_splits: Optional[int] = None,
        outwidth: int = 417,
        center_crop_fraction: Optional[float] = None,
        sampling: slice = slice(None, None, None),
    ) -> np.ndarray:
        """Return the cartesian flow of a fly eye rendered flow.

        Args:
            key: Index of the sequence.
            vertical_splits: Number of vertical splits to apply.
            outwidth: Output width of the flow.
            center_crop_fraction: Fraction of the image to keep after cropping.
            sampling: Slice object for sampling frames.

        Returns:
            Numpy array containing the cartesian flow.
        """
        key = self.original_sequence_index(key)
        flow_path = self.meta.flow_paths[key]
        flow = np.array([
            sample_flow(path) for path in sorted(flow_path.iterdir())[sampling]
        ])

        return split(
            flow,
            outwidth,
            vertical_splits or self.vertical_splits,
            center_crop_fraction or self.center_crop_fraction,
        )

    def cartesian_depth(
        self,
        key: int,
        vertical_splits: Optional[int] = None,
        outwidth: int = 417,
        center_crop_fraction: Optional[float] = None,
        sampling: slice = slice(1, None, None),
    ) -> np.ndarray:
        """Return the cartesian depth of a fly eye rendered depth.

        Args:
            key: Index of the sequence.
            vertical_splits: Number of vertical splits to apply.
            outwidth: Output width of the depth.
            center_crop_fraction: Fraction of the image to keep after cropping.
            sampling: Slice object for sampling frames.

        Returns:
            Numpy array containing the cartesian depth.
        """
        key = self.original_sequence_index(key)
        flow_path = self.meta.depth_paths[key]
        depth = np.array([
            sample_depth(path) for path in sorted(flow_path.iterdir())[sampling]
        ])

        return split(
            depth,
            outwidth,
            vertical_splits or self.vertical_splits,
            center_crop_fraction or self.center_crop_fraction,
        )

    def original_train_and_validation_indices(self) -> Tuple[List[int], List[int]]:
        """Get original training and validation indices for the dataloader.

        Returns:
            Tuple containing lists of train and validation indices.
        """
        return original_train_and_validation_indices(self)

augment property writable

augment

Get the current augmentation state.

init_cache

init_cache()

Initialize the cache with preprocessed sequences.

Source code in flyvis/datasets/sintel.py
347
348
349
350
351
352
353
354
355
356
def init_cache(self) -> None:
    """Initialize the cache with preprocessed sequences."""
    self.cached_sequences = [
        {
            key: torch.tensor(val, dtype=torch.float32)
            for key, val in self.rendered(seq_id).items()
            if key in self.data_keys
        }
        for seq_id in range(len(self))
    ]

__setattr__

__setattr__(name, value)

Custom attribute setter to handle special cases and update augmentation.

Parameters:

Name Type Description Default
name str

Name of the attribute to set.

required
value Any

Value to set the attribute to.

required

Raises:

Type Description
AttributeError

If trying to change framerate or rendered initialization attributes.

Source code in flyvis/datasets/sintel.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def __setattr__(self, name: str, value: Any) -> None:
    """Custom attribute setter to handle special cases and update augmentation.

    Args:
        name: Name of the attribute to set.
        value: Value to set the attribute to.

    Raises:
        AttributeError: If trying to change framerate or rendered initialization
            attributes.
    """
    # some changes have no effect cause they are fixed, or set by the pre-rendering
    if name == "framerate":
        raise AttributeError("cannot change framerate")
    if hasattr(self, "rendered") and name in self.rendered.config:
        raise AttributeError("cannot change attribute of rendered initialization")
    super().__setattr__(name, value)
    # also update augmentation because it may already be initialized
    if getattr(self, "_augmentations_are_initialized", False):
        self.update_augmentation(name, value)

init_augmentation

init_augmentation()

Initialize augmentation callables.

Source code in flyvis/datasets/sintel.py
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
def init_augmentation(self) -> None:
    """Initialize augmentation callables."""
    self.temporal_crop = CropFrames(
        self.n_frames, all_frames=self.all_frames, random=self.random_temporal_crop
    )
    self.jitter = ContrastBrightness(
        contrast_std=self.contrast_std, brightness_std=self.brightness_std
    )
    self.rotate = HexRotate(self.extent, p_rot=self.p_rot)
    self.flip = HexFlip(self.extent, p_flip=self.p_flip, flip_axes=self.flip_axes)
    self.noise = PixelNoise(self.gaussian_white_noise)

    self.piecewise_resample = Interpolate(
        self.original_framerate, 1 / self.dt, mode="nearest-exact"
    )
    self.linear_interpolate = Interpolate(
        self.original_framerate,
        1 / self.dt,
        mode="linear",
    )
    self.gamma_correct = GammaCorrection(1, self.gamma_std)

update_augmentation

update_augmentation(name, value)

Update augmentation parameters based on attribute changes.

Parameters:

Name Type Description Default
name str

Name of the attribute that changed.

required
value Any

New value of the attribute.

required
Source code in flyvis/datasets/sintel.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def update_augmentation(self, name: str, value: Any) -> None:
    """Update augmentation parameters based on attribute changes.

    Args:
        name: Name of the attribute that changed.
        value: New value of the attribute.
    """
    if name == "dt":
        self.piecewise_resample.target_framerate = 1 / value
        self.linear_interpolate.target_framerate = 1 / value
    if name in ["all_frames", "random_temporal_crop"]:
        self.temporal_crop.all_frames = value
        self.temporal_crop.random = value
    if name in ["contrast_std", "brightness_std"]:
        self.jitter.contrast_std = value
        self.jitter.brightness_std = value
    if name == "p_rot":
        self.rotate.p_rot = value
    if name == "p_flip":
        self.flip.p_flip = value
    if name == "gaussian_white_noise":
        self.noise.std = value
    if name == "gamma_std":
        self.gamma_correct.std = value

set_augmentation_params

set_augmentation_params(n_rot=None, flip_axis=None, contrast_factor=None, brightness_factor=None, gaussian_white_noise=None, gamma=None, start_frame=None, total_sequence_length=None)

Set augmentation callable parameters.

Info

Called for each call of get_item.

Parameters:

Name Type Description Default
n_rot Optional[int]

Number of rotations to apply.

None
flip_axis Optional[int]

Axis to flip over.

None
contrast_factor Optional[float]

Contrast factor for jitter augmentation.

None
brightness_factor Optional[float]

Brightness factor for jitter augmentation.

None
gaussian_white_noise Optional[float]

Standard deviation for noise augmentation.

None
gamma Optional[float]

Gamma value for gamma correction.

None
start_frame Optional[int]

Starting frame for temporal crop.

None
total_sequence_length Optional[int]

Total length of the sequence.

None
Source code in flyvis/datasets/sintel.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def set_augmentation_params(
    self,
    n_rot: Optional[int] = None,
    flip_axis: Optional[int] = None,
    contrast_factor: Optional[float] = None,
    brightness_factor: Optional[float] = None,
    gaussian_white_noise: Optional[float] = None,
    gamma: Optional[float] = None,
    start_frame: Optional[int] = None,
    total_sequence_length: Optional[int] = None,
) -> None:
    """Set augmentation callable parameters.

    Info:
        Called for each call of get_item.

    Args:
        n_rot: Number of rotations to apply.
        flip_axis: Axis to flip over.
        contrast_factor: Contrast factor for jitter augmentation.
        brightness_factor: Brightness factor for jitter augmentation.
        gaussian_white_noise: Standard deviation for noise augmentation.
        gamma: Gamma value for gamma correction.
        start_frame: Starting frame for temporal crop.
        total_sequence_length: Total length of the sequence.
    """
    if not self.fix_augmentation_params:
        self.rotate.set_or_sample(n_rot)
        self.flip.set_or_sample(flip_axis)
        self.jitter.set_or_sample(contrast_factor, brightness_factor)
        self.noise.set_or_sample(gaussian_white_noise)
        self.gamma_correct.set_or_sample(gamma)
        self.temporal_crop.set_or_sample(
            start=start_frame, total_sequence_length=total_sequence_length
        )

get_item

get_item(key)

Return a dataset sample.

Parameters:

Name Type Description Default
key int

Index of the sample to retrieve.

required

Returns:

Type Description
Dict[str, Tensor]

Dictionary containing the augmented sample data.

Source code in flyvis/datasets/sintel.py
471
472
473
474
475
476
477
478
479
480
def get_item(self, key: int) -> Dict[str, torch.Tensor]:
    """Return a dataset sample.

    Args:
        key: Index of the sample to retrieve.

    Returns:
        Dictionary containing the augmented sample data.
    """
    return self.apply_augmentation(self.cached_sequences[key])

augmentation

augmentation(abool)

Context manager to turn augmentation on or off in a code block.

Parameters:

Name Type Description Default
abool bool

Boolean value to set augmentation state.

required
Example
with dataset.augmentation(True):
    for i, data in enumerate(dataloader):
        ...  # all data is augmented
Source code in flyvis/datasets/sintel.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
@contextmanager
def augmentation(self, abool: bool):
    """Context manager to turn augmentation on or off in a code block.

    Args:
        abool: Boolean value to set augmentation state.

    Example:
        ```python
        with dataset.augmentation(True):
            for i, data in enumerate(dataloader):
                ...  # all data is augmented
        ```
    """
    augmentations = [
        "temporal_crop",
        "jitter",
        "rotate",
        "flip",
        "noise",
        "piecewise_resample",
        "linear_interpolate",
        "gamma_correct",
    ]
    states = {key: getattr(self, key).augment for key in augmentations}
    _augment = self.augment
    try:
        self.augment = abool
        yield
    finally:
        self.augment = _augment
        for key in augmentations:
            getattr(self, key).augment = states[key]

apply_augmentation

apply_augmentation(data, n_rot=None, flip_axis=None, contrast_factor=None, brightness_factor=None, gaussian_white_noise=None, gamma=None)

Apply augmentation to a sample from the dataset.

Parameters:

Name Type Description Default
data Dict[str, Tensor]

Dictionary containing the sample data.

required
n_rot Optional[int]

Number of rotations to apply.

None
flip_axis Optional[int]

Axis to flip over.

None
contrast_factor Optional[float]

Contrast factor for jitter augmentation.

None
brightness_factor Optional[float]

Brightness factor for jitter augmentation.

None
gaussian_white_noise Optional[float]

Standard deviation for noise augmentation.

None
gamma Optional[float]

Gamma value for gamma correction.

None

Returns:

Type Description
Dict[str, Tensor]

Dictionary containing the augmented sample data.

Source code in flyvis/datasets/sintel.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
def apply_augmentation(
    self,
    data: Dict[str, torch.Tensor],
    n_rot: Optional[int] = None,
    flip_axis: Optional[int] = None,
    contrast_factor: Optional[float] = None,
    brightness_factor: Optional[float] = None,
    gaussian_white_noise: Optional[float] = None,
    gamma: Optional[float] = None,
) -> Dict[str, torch.Tensor]:
    """Apply augmentation to a sample from the dataset.

    Args:
        data: Dictionary containing the sample data.
        n_rot: Number of rotations to apply.
        flip_axis: Axis to flip over.
        contrast_factor: Contrast factor for jitter augmentation.
        brightness_factor: Brightness factor for jitter augmentation.
        gaussian_white_noise: Standard deviation for noise augmentation.
        gamma: Gamma value for gamma correction.

    Returns:
        Dictionary containing the augmented sample data.
    """

    self.set_augmentation_params(
        n_rot=n_rot,
        flip_axis=flip_axis,
        contrast_factor=contrast_factor,
        brightness_factor=brightness_factor,
        gaussian_white_noise=gaussian_white_noise,
        gamma=gamma,
        start_frame=None,
        total_sequence_length=data["lum"].shape[0],
    )

    def transform_lum(lum):
        return self.piecewise_resample(
            self.rotate(
                self.flip(
                    self.jitter(
                        self.noise(self.temporal_crop(lum)),
                    ),
                )
            )
        )

    def transform_target(target):
        if self.interpolate:
            return self.linear_interpolate(
                self.rotate(self.flip(self.temporal_crop(target)))
            )
        return self.piecewise_resample(
            self.rotate(self.flip(self.temporal_crop(target)))
        )

    return {
        **{"lum": transform_lum(data["lum"])},
        **{
            target: transform_target(data[target])
            for target in self.tasks
            if target in ["flow", "depth"]
        },
    }

original_sequence_index

original_sequence_index(key)

Get the original sequence index from an index of the split.

Parameters:

Name Type Description Default
key int

Index of the split.

required

Returns:

Type Description
int

Original sequence index.

Raises:

Type Description
ValueError

If the key is not found in splits.

Source code in flyvis/datasets/sintel.py
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
def original_sequence_index(self, key: int) -> int:
    """Get the original sequence index from an index of the split.

    Args:
        key: Index of the split.

    Returns:
        Original sequence index.

    Raises:
        ValueError: If the key is not found in splits.
    """
    for index, splits in self.meta.sequence_index_to_splits.items():
        if key in splits:
            return index
    raise ValueError(f"key {key} not found in splits")

cartesian_sequence

cartesian_sequence(key, vertical_splits=None, outwidth=716, center_crop_fraction=None, sampling=slice(1, None, None))

Return the cartesian sequence of a fly eye rendered sequence.

Parameters:

Name Type Description Default
key int

Index of the sequence.

required
vertical_splits Optional[int]

Number of vertical splits to apply.

None
outwidth int

Output width of the sequence.

716
center_crop_fraction Optional[float]

Fraction of the image to keep after cropping.

None
sampling slice

Slice object for sampling frames.

slice(1, None, None)

Returns:

Type Description
ndarray

Numpy array containing the cartesian sequence.

Source code in flyvis/datasets/sintel.py
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def cartesian_sequence(
    self,
    key: int,
    vertical_splits: Optional[int] = None,
    outwidth: int = 716,
    center_crop_fraction: Optional[float] = None,
    sampling: slice = slice(1, None, None),
) -> np.ndarray:
    """Return the cartesian sequence of a fly eye rendered sequence.

    Args:
        key: Index of the sequence.
        vertical_splits: Number of vertical splits to apply.
        outwidth: Output width of the sequence.
        center_crop_fraction: Fraction of the image to keep after cropping.
        sampling: Slice object for sampling frames.

    Returns:
        Numpy array containing the cartesian sequence.
    """
    # we want to retrieve the original scene which is possibly split
    # into multiple ones
    key = self.original_sequence_index(key)
    lum_path = self.meta.lum_paths[key]
    images = np.array([
        sample_lum(path) for path in sorted(lum_path.iterdir())[sampling]
    ])
    return split(
        images,
        outwidth,
        vertical_splits or self.vertical_splits,
        center_crop_fraction or self.center_crop_fraction,
    )

cartesian_flow

cartesian_flow(key, vertical_splits=None, outwidth=417, center_crop_fraction=None, sampling=slice(None, None, None))

Return the cartesian flow of a fly eye rendered flow.

Parameters:

Name Type Description Default
key int

Index of the sequence.

required
vertical_splits Optional[int]

Number of vertical splits to apply.

None
outwidth int

Output width of the flow.

417
center_crop_fraction Optional[float]

Fraction of the image to keep after cropping.

None
sampling slice

Slice object for sampling frames.

slice(None, None, None)

Returns:

Type Description
ndarray

Numpy array containing the cartesian flow.

Source code in flyvis/datasets/sintel.py
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
def cartesian_flow(
    self,
    key: int,
    vertical_splits: Optional[int] = None,
    outwidth: int = 417,
    center_crop_fraction: Optional[float] = None,
    sampling: slice = slice(None, None, None),
) -> np.ndarray:
    """Return the cartesian flow of a fly eye rendered flow.

    Args:
        key: Index of the sequence.
        vertical_splits: Number of vertical splits to apply.
        outwidth: Output width of the flow.
        center_crop_fraction: Fraction of the image to keep after cropping.
        sampling: Slice object for sampling frames.

    Returns:
        Numpy array containing the cartesian flow.
    """
    key = self.original_sequence_index(key)
    flow_path = self.meta.flow_paths[key]
    flow = np.array([
        sample_flow(path) for path in sorted(flow_path.iterdir())[sampling]
    ])

    return split(
        flow,
        outwidth,
        vertical_splits or self.vertical_splits,
        center_crop_fraction or self.center_crop_fraction,
    )

cartesian_depth

cartesian_depth(key, vertical_splits=None, outwidth=417, center_crop_fraction=None, sampling=slice(1, None, None))

Return the cartesian depth of a fly eye rendered depth.

Parameters:

Name Type Description Default
key int

Index of the sequence.

required
vertical_splits Optional[int]

Number of vertical splits to apply.

None
outwidth int

Output width of the depth.

417
center_crop_fraction Optional[float]

Fraction of the image to keep after cropping.

None
sampling slice

Slice object for sampling frames.

slice(1, None, None)

Returns:

Type Description
ndarray

Numpy array containing the cartesian depth.

Source code in flyvis/datasets/sintel.py
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
def cartesian_depth(
    self,
    key: int,
    vertical_splits: Optional[int] = None,
    outwidth: int = 417,
    center_crop_fraction: Optional[float] = None,
    sampling: slice = slice(1, None, None),
) -> np.ndarray:
    """Return the cartesian depth of a fly eye rendered depth.

    Args:
        key: Index of the sequence.
        vertical_splits: Number of vertical splits to apply.
        outwidth: Output width of the depth.
        center_crop_fraction: Fraction of the image to keep after cropping.
        sampling: Slice object for sampling frames.

    Returns:
        Numpy array containing the cartesian depth.
    """
    key = self.original_sequence_index(key)
    flow_path = self.meta.depth_paths[key]
    depth = np.array([
        sample_depth(path) for path in sorted(flow_path.iterdir())[sampling]
    ])

    return split(
        depth,
        outwidth,
        vertical_splits or self.vertical_splits,
        center_crop_fraction or self.center_crop_fraction,
    )

original_train_and_validation_indices

original_train_and_validation_indices()

Get original training and validation indices for the dataloader.

Returns:

Type Description
Tuple[List[int], List[int]]

Tuple containing lists of train and validation indices.

Source code in flyvis/datasets/sintel.py
724
725
726
727
728
729
730
def original_train_and_validation_indices(self) -> Tuple[List[int], List[int]]:
    """Get original training and validation indices for the dataloader.

    Returns:
        Tuple containing lists of train and validation indices.
    """
    return original_train_and_validation_indices(self)

flyvis.datasets.sintel.AugmentedSintel

Bases: MultiTaskSintel

Sintel dataset with controlled, rich augmentation.

Info

Returns deterministic augmented dataset to evaluate networks on a richer dataset.

Parameters:

Name Type Description Default
n_frames int

Number of sequence frames to sample from.

19
flip_axes List[int]

List of axes to flip over.

[0, 1]
n_rotations List[int]

List of number of rotations to perform.

[0, 1, 2, 3, 4, 5]
temporal_split bool

Enable temporally controlled augmentation (experimental).

False
build_stim_on_init bool

Build the augmented stimulus in cache.

True
dt float

Integration and sampling time constant.

1 / 50
tasks List[Literal['flow', 'depth', 'lum']]

List of tasks to include. May include ‘flow’, ‘lum’, or ‘depth’.

['flow']
interpolate bool

If True, linearly interpolates the target sequence to the target framerate.

True
all_frames bool

If True, all frames are returned. If False, only n_frames.

False
random_temporal_crop bool

Randomly crops a temporal window of length n_frames from each sequence.

False
boxfilter Dict[str, int]

Key word arguments for the BoxEye filter.

dict(extent=15, kernel_size=13)
vertical_splits int

Number of vertical splits of each frame.

3
contrast_std Optional[float]

Standard deviation of the contrast augmentation.

None
brightness_std Optional[float]

Standard deviation of the brightness augmentation.

None
gaussian_white_noise Optional[float]

Standard deviation of the pixel-wise gaussian white noise.

None
gamma_std Optional[float]

Standard deviation of the gamma augmentation.

None
center_crop_fraction float

Fraction of the image to keep after cropping.

0.7
indices Optional[List[int]]

Indices of the sequences to include.

None
unittest bool

If True, only renders a single sequence.

False

Attributes:

Name Type Description
cached_sequences List[Dict[str, Tensor]]

List of preprocessed sequences for fast dataloading.

valid_flip_axes List[int]

List of valid flip axes.

valid_rotations List[int]

List of valid rotation values.

flip_axes List[int]

List of axes to flip over.

n_rotations List[int]

List of number of rotations to perform.

temporal_split bool

Flag for temporally controlled augmentation.

_built bool

Flag indicating if the dataset has been built.

params List

List of augmentation parameters for each sequence.

arg_df DataFrame

DataFrame containing augmentation parameters for each sequence.

Source code in flyvis/datasets/sintel.py
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
class AugmentedSintel(MultiTaskSintel):
    """Sintel dataset with controlled, rich augmentation.

    Info:
        Returns deterministic augmented dataset to evaluate networks on a richer dataset.

    Args:
        n_frames: Number of sequence frames to sample from.
        flip_axes: List of axes to flip over.
        n_rotations: List of number of rotations to perform.
        temporal_split: Enable temporally controlled augmentation (experimental).
        build_stim_on_init: Build the augmented stimulus in cache.
        dt: Integration and sampling time constant.
        tasks: List of tasks to include. May include 'flow', 'lum', or 'depth'.
        interpolate: If True, linearly interpolates the target sequence to the target
            framerate.
        all_frames: If True, all frames are returned. If False, only `n_frames`.
        random_temporal_crop: Randomly crops a temporal window of length `n_frames`
            from each sequence.
        boxfilter: Key word arguments for the BoxEye filter.
        vertical_splits: Number of vertical splits of each frame.
        contrast_std: Standard deviation of the contrast augmentation.
        brightness_std: Standard deviation of the brightness augmentation.
        gaussian_white_noise: Standard deviation of the pixel-wise gaussian white noise.
        gamma_std: Standard deviation of the gamma augmentation.
        center_crop_fraction: Fraction of the image to keep after cropping.
        indices: Indices of the sequences to include.
        unittest: If True, only renders a single sequence.

    Attributes:
        cached_sequences (List[Dict[str, torch.Tensor]]): List of preprocessed sequences
            for fast dataloading.
        valid_flip_axes (List[int]): List of valid flip axes.
        valid_rotations (List[int]): List of valid rotation values.
        flip_axes (List[int]): List of axes to flip over.
        n_rotations (List[int]): List of number of rotations to perform.
        temporal_split (bool): Flag for temporally controlled augmentation.
        _built (bool): Flag indicating if the dataset has been built.
        params (List): List of augmentation parameters for each sequence.
        arg_df (pd.DataFrame): DataFrame containing augmentation parameters for each
            sequence.
    """

    cached_sequences: List[Dict[str, torch.Tensor]]
    valid_flip_axes: List[int] = [0, 1, 2, 3]
    valid_rotations: List[int] = [0, 1, 2, 3, 4, 5]

    def __init__(
        self,
        n_frames: int = 19,
        flip_axes: List[int] = [0, 1],
        n_rotations: List[int] = [0, 1, 2, 3, 4, 5],
        build_stim_on_init: bool = True,
        temporal_split: bool = False,
        augment: bool = True,
        dt: float = 1 / 50,
        tasks: List[Literal["flow", "depth", "lum"]] = ["flow"],
        interpolate: bool = True,
        all_frames: bool = False,
        random_temporal_crop: bool = False,
        boxfilter: Dict[str, int] = dict(extent=15, kernel_size=13),
        vertical_splits: int = 3,
        contrast_std: Optional[float] = None,
        brightness_std: Optional[float] = None,
        gaussian_white_noise: Optional[float] = None,
        gamma_std: Optional[float] = None,
        center_crop_fraction: float = 0.7,
        indices: Optional[List[int]] = None,
        unittest: bool = False,
        **kwargs,
    ):
        if any([arg not in self.valid_flip_axes for arg in flip_axes]):
            raise ValueError(f"invalid flip axes {flip_axes}")

        if any([arg not in self.valid_rotations for arg in n_rotations]):
            raise ValueError(f"invalid rotations {n_rotations}")

        super().__init__(
            tasks=tasks,
            interpolate=interpolate,
            n_frames=n_frames,
            dt=dt,
            augment=augment,
            all_frames=all_frames,
            resampling=True,
            random_temporal_crop=random_temporal_crop,
            boxfilter=boxfilter,
            vertical_splits=vertical_splits,
            p_flip=0,
            p_rot=0,
            contrast_std=contrast_std,
            brightness_std=brightness_std,
            gaussian_white_noise=gaussian_white_noise,
            gamma_std=gamma_std,
            center_crop_fraction=center_crop_fraction,
            unittest=unittest,
            _init_cache=True,
        )
        self.indices = np.array(indices) if indices is not None else None
        self.flip_axes = flip_axes
        self.n_rotations = n_rotations
        self.temporal_split = temporal_split

        self.config.update({
            'flip_axes': self.flip_axes,
            'n_rotations': self.n_rotations,
            'temporal_split': self.temporal_split,
            'indices': self.indices,
        })

        self._built = False
        if build_stim_on_init:
            self._build()
            self._built = True

    def _build(self):
        """Build augmented dataset with temporal splits and geometric augmentations."""
        # to deterministically apply temporal augmentation/binning of sequences
        # into ceil(sequence_length / n_frames) bins
        (
            self.cached_sequences,
            self.original_repeats,
        ) = temporal_split_cached_samples(
            self.cached_sequences, self.n_frames, split=self.temporal_split
        )

        vsplit_index, original_index, name = (
            self.arg_df[["index", "original_index", "name"]]
            .values.repeat(self.original_repeats, axis=0)
            .T
        )
        tsplit_index = np.arange(len(self.cached_sequences))

        n_frames = [d["lum"].shape[0] for d in self.cached_sequences]

        self.params = [
            (*p[0], p[1], p[2])
            for p in list(
                product(
                    zip(
                        name,
                        original_index,
                        vsplit_index,
                        tsplit_index,
                        n_frames,
                    ),
                    self.flip_axes,
                    self.n_rotations,
                )
            )
        ]

        self.arg_df = pd.DataFrame(
            self.params,
            columns=[
                "name",
                "original_index",
                "vertical_split_index",
                "temporal_split_index",
                "frames",
                "flip_ax",
                "n_rot",
            ],
        )
        # breakpoint()
        # apply deterministic geometric augmentation
        cached_sequences = {}
        for i, (_, _, _, sample, _, flip_ax, n_rot) in enumerate(self.params):
            self.flip.axis = flip_ax
            self.rotate.n_rot = n_rot
            cached_sequences[i] = {
                key: self.rotate(self.flip(value))
                for key, value in self.cached_sequences[sample].items()
            }
        self.cached_sequences = cached_sequences

        if self.indices is not None:
            self.cached_sequences = [self.cached_sequences[i] for i in self.indices]
            self.arg_df = self.arg_df.iloc[self.indices]
            self.params = [self.params[i] for i in self.indices]

        # disable deterministically applied augmentation, such that in case
        # self.augment is True, the other augmentation types can be applied
        # randomly
        self.flip.augment = False
        self.rotate.augment = False
        # default to cropping 0 to n_frames
        self.temporal_crop.random = False
        if self.temporal_split:
            self.temporal_crop.augment = False

    def _original_length(self) -> int:
        """Return the original number of sequences before splitting."""
        return len(self) // self.vertical_splits

    def pad_nans(
        self, data: Dict[str, torch.Tensor], pad_to_length: Optional[int] = None
    ) -> Dict[str, torch.Tensor]:
        """Pad the data with NaNs to a specified length.

        Args:
            data: Dictionary containing the data to pad.
            pad_to_length: Length to pad the data to.

        Returns:
            Padded data dictionary.
        """
        if pad_to_length is not None:
            data = {}
            for key, value in data.items():
                # pylint: disable=not-callable
                data[key] = nnf.pad(
                    value,
                    pad=(0, 0, 0, 0, 0, pad_to_length),
                    mode="constant",
                    value=np.nan,
                )
            return data
        return data

    def get_item(
        self, key: int, pad_to_length: Optional[int] = None
    ) -> Dict[str, torch.Tensor]:
        """Get a single item from the dataset.

        Args:
            key: Index of the item to retrieve.
            pad_to_length: Length to pad the data to.

        Returns:
            Dictionary containing the retrieved data.
        """
        if self.augment:
            return self.pad_nans(
                self.apply_augmentation(self.cached_sequences[key], n_rot=0, flip_axis=0),
                pad_to_length,
            )
        return self.pad_nans(self.cached_sequences[key], pad_to_length)

pad_nans

pad_nans(data, pad_to_length=None)

Pad the data with NaNs to a specified length.

Parameters:

Name Type Description Default
data Dict[str, Tensor]

Dictionary containing the data to pad.

required
pad_to_length Optional[int]

Length to pad the data to.

None

Returns:

Type Description
Dict[str, Tensor]

Padded data dictionary.

Source code in flyvis/datasets/sintel.py
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
def pad_nans(
    self, data: Dict[str, torch.Tensor], pad_to_length: Optional[int] = None
) -> Dict[str, torch.Tensor]:
    """Pad the data with NaNs to a specified length.

    Args:
        data: Dictionary containing the data to pad.
        pad_to_length: Length to pad the data to.

    Returns:
        Padded data dictionary.
    """
    if pad_to_length is not None:
        data = {}
        for key, value in data.items():
            # pylint: disable=not-callable
            data[key] = nnf.pad(
                value,
                pad=(0, 0, 0, 0, 0, pad_to_length),
                mode="constant",
                value=np.nan,
            )
        return data
    return data

get_item

get_item(key, pad_to_length=None)

Get a single item from the dataset.

Parameters:

Name Type Description Default
key int

Index of the item to retrieve.

required
pad_to_length Optional[int]

Length to pad the data to.

None

Returns:

Type Description
Dict[str, Tensor]

Dictionary containing the retrieved data.

Source code in flyvis/datasets/sintel.py
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
def get_item(
    self, key: int, pad_to_length: Optional[int] = None
) -> Dict[str, torch.Tensor]:
    """Get a single item from the dataset.

    Args:
        key: Index of the item to retrieve.
        pad_to_length: Length to pad the data to.

    Returns:
        Dictionary containing the retrieved data.
    """
    if self.augment:
        return self.pad_nans(
            self.apply_augmentation(self.cached_sequences[key], n_rot=0, flip_axis=0),
            pad_to_length,
        )
    return self.pad_nans(self.cached_sequences[key], pad_to_length)

Utils

flyvis.datasets.sintel_utils

load_sequence

load_sequence(path, sample_function, start=0, end=None, as_tensor=True)

Calls sample_function on each file in the sorted path and returns a concatenation of the results.

Parameters:

Name Type Description Default
path Path

Path to the directory containing the sequence files.

required
sample_function Callable

Function to apply to each file in the sequence.

required
start int

Starting index for file selection.

0
end Optional[int]

Ending index for file selection.

None
as_tensor bool

If True, returns a PyTorch tensor; otherwise, returns a NumPy array.

True

Returns:

Type Description
Union[ndarray, Tensor]

Concatenated sequence data as either a PyTorch tensor or NumPy array.

Source code in flyvis/datasets/sintel_utils.py
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def load_sequence(
    path: Path,
    sample_function: Callable,
    start: int = 0,
    end: Optional[int] = None,
    as_tensor: bool = True,
) -> Union[np.ndarray, torch.Tensor]:
    """Calls sample_function on each file in the sorted path and returns
    a concatenation of the results.

    Args:
        path: Path to the directory containing the sequence files.
        sample_function: Function to apply to each file in the sequence.
        start: Starting index for file selection.
        end: Ending index for file selection.
        as_tensor: If True, returns a PyTorch tensor; otherwise, returns a NumPy array.

    Returns:
        Concatenated sequence data as either a PyTorch tensor or NumPy array.
    """
    samples = []
    for p in sorted(path.iterdir())[start:end]:
        samples.append(sample_function(p))
    samples = np.array(samples)
    if as_tensor:
        return torch.tensor(samples, dtype=torch.float32)
    return samples

sample_lum

sample_lum(path)

Sample luminance data from an image file.

Parameters:

Name Type Description Default
path Path

Path to the image file.

required

Returns:

Type Description
ndarray

Normalized luminance data as a NumPy array.

Source code in flyvis/datasets/sintel_utils.py
48
49
50
51
52
53
54
55
56
57
58
def sample_lum(path: Path) -> np.ndarray:
    """Sample luminance data from an image file.

    Args:
        path: Path to the image file.

    Returns:
        Normalized luminance data as a NumPy array.
    """
    lum = np.float32(Image.open(path).convert("L")) / 255
    return lum

sample_flow

sample_flow(path)

Sample optical flow data from a file.

Note: Flow is in units of pixel / image_height and with inverted negative y coordinate (i.e. y-axis pointing upwards in image plane).

Parameters:

Name Type Description Default
path Path

Path to the flow data file.

required

Returns:

Type Description
ndarray

Optical flow data as a NumPy array.

Source code in flyvis/datasets/sintel_utils.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def sample_flow(path: Path) -> np.ndarray:
    """Sample optical flow data from a file.

    Note: Flow is in units of pixel / image_height and with inverted negative y
    coordinate (i.e. y-axis pointing upwards in image plane).

    Args:
        path: Path to the flow data file.

    Returns:
        Optical flow data as a NumPy array.
    """
    with open(path, "rb") as f:
        _, w, h = np.fromfile(f, np.int32, count=3)
        data = np.fromfile(f, np.float32, count=(h * w * 2))
        uv = np.reshape(data, (h, w, 2)) / h  # why are we dividing by h?
        # we invert the y coordinate, which points from the top of the
        # image plane to the bottom
        return uv.transpose(2, 0, 1) * np.array([1, -1])[:, None, None]

sample_depth

sample_depth(filename)

Sample depth data from a file.

Parameters:

Name Type Description Default
filename Path

Path to the depth data file.

required

Returns:

Type Description
ndarray

Depth data as a NumPy array.

Source code in flyvis/datasets/sintel_utils.py
82
83
84
85
86
87
88
89
90
91
92
93
94
def sample_depth(filename: Path) -> np.ndarray:
    """Sample depth data from a file.

    Args:
        filename: Path to the depth data file.

    Returns:
        Depth data as a NumPy array.
    """
    with open(filename, "rb") as f:
        _, width, height = np.fromfile(f, dtype=np.int32, count=3)
        depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
    return depth

temporal_split_cached_samples

temporal_split_cached_samples(cached_sequences, max_frames, split=True)

Deterministically split sequences in time dimension into regularly binned sequences.

Note

Overlapping splits of sequences which lengths are not an integer multiple of max_frames contain repeating frames.

Parameters:

Name Type Description Default
cached_sequences List[Dict[str, Tensor]]

Ordered list of dicts of sequences of shape (n_frames, n_features, n_hexals).

required
max_frames int

Maximum number of frames per split.

required
split bool

Whether to perform the temporal split.

True

Returns:

Type Description
List[Dict[str, Tensor]]

Tuple containing:

ndarray
  • List of dictionaries with temporally split sequences.
Tuple[List[Dict[str, Tensor]], ndarray]
  • Array of original indices for each new split.
Source code in flyvis/datasets/sintel_utils.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def temporal_split_cached_samples(
    cached_sequences: List[Dict[str, torch.Tensor]], max_frames: int, split: bool = True
) -> Tuple[List[Dict[str, torch.Tensor]], np.ndarray]:
    """Deterministically split sequences in time dimension into regularly binned
        sequences.

    Note:
        Overlapping splits of sequences which lengths are not an integer multiple of
        `max_frames` contain repeating frames.

    Args:
        cached_sequences: Ordered list of dicts of sequences of shape
            (n_frames, n_features, n_hexals).
        max_frames: Maximum number of frames per split.
        split: Whether to perform the temporal split.

    Returns:
        Tuple containing:
        - List of dictionaries with temporally split sequences.
        - Array of original indices for each new split.
    """
    if split:
        seq_lists = {k: [] for k in cached_sequences[0]}

        splits_per_seq = []
        for i, sequence in enumerate(cached_sequences):
            for key, value in sequence.items():
                splits = temporal_split_sequence(value, max_frames)
                seq_lists[key].extend([*splits])
            splits_per_seq.append([i, len(splits)])

        split_cached_sequences = []
        for i in range(len(seq_lists["lum"])):
            split_cached_sequences.append({k: v[i] for k, v in seq_lists.items()})

        index, repeats = np.array(splits_per_seq).T
        return split_cached_sequences, repeats
    return cached_sequences, np.ones(len(cached_sequences)).astype(int)

temporal_split_sequence

temporal_split_sequence(sequence, max_frames)

Split a sequence along the temporal dimension.

Parameters:

Name Type Description Default
sequence Union[ndarray, Tensor]

Array or tensor of shape (n_frames, n_features, n_hexals).

required
max_frames int

Maximum number of frames per split.

required

Returns:

Type Description
Union[ndarray, Tensor]

Array or tensor of shape (splits, max_frames, n_features, n_hexals).

Notes

The number of splits is computed as int(np.round(n_frames / max_frames)).

Source code in flyvis/datasets/sintel_utils.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def temporal_split_sequence(
    sequence: Union[np.ndarray, torch.Tensor], max_frames: int
) -> Union[np.ndarray, torch.Tensor]:
    """Split a sequence along the temporal dimension.

    Args:
        sequence: Array or tensor of shape (n_frames, n_features, n_hexals).
        max_frames: Maximum number of frames per split.

    Returns:
        Array or tensor of shape (splits, max_frames, n_features, n_hexals).

    Notes:
        The number of splits is computed as int(np.round(n_frames / max_frames)).
    """
    n_frames, _, _ = sequence.shape
    splits = np.round(n_frames / max_frames).astype(int)
    if splits <= 1:
        return sequence[:max_frames][None]
    return split(
        sequence.transpose(0, -1),  # splits along last axis
        max_frames,
        splits,
        center_crop_fraction=None,
    ).transpose(1, -1)  # cause first will be splits, second will be frames

remove_nans

remove_nans(responses)

Remove NaNs from responses array.

Parameters:

Name Type Description Default
responses ndarray

Array of shape (sample, frames, channels).

required

Returns:

Type Description
List[ndarray]

List of arrays with NaNs removed, potentially of different sizes.

Source code in flyvis/datasets/sintel_utils.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def remove_nans(responses: np.ndarray) -> List[np.ndarray]:
    """Remove NaNs from responses array.

    Args:
        responses: Array of shape (sample, frames, channels).

    Returns:
        List of arrays with NaNs removed, potentially of different sizes.
    """
    _resp = []
    for r in responses:
        _isnan = np.isnan(r).any(axis=1)
        _resp.append(r[~_isnan].squeeze())
    return _resp

sintel_meta

sintel_meta(rendered, sintel_path, n_frames, vertical_splits, render_depth)

Returns a dataclass with meta information about the (rendered) sintel dataset.

Parameters:

Name Type Description Default
rendered RenderedSintel

RenderedSintel object containing the rendered data.

required
sintel_path Path

Path to the Sintel dataset.

required
n_frames int

Number of frames to consider for each sequence.

required
vertical_splits int

Number of vertical splits for each frame.

required
render_depth bool

Whether depth data is rendered.

required

Returns:

Type Description
SintelMeta

Meta dataclass containing metadata about the Sintel dataset.

Source code in flyvis/datasets/sintel_utils.py
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def sintel_meta(
    rendered: "flyvis.RenderedSintel",
    sintel_path: Path,
    n_frames: int,
    vertical_splits: int,
    render_depth: bool,
) -> SintelMeta:
    """Returns a dataclass with meta information about the (rendered) sintel dataset.

    Args:
        rendered: RenderedSintel object containing the rendered data.
        sintel_path: Path to the Sintel dataset.
        n_frames: Number of frames to consider for each sequence.
        vertical_splits: Number of vertical splits for each frame.
        render_depth: Whether depth data is rendered.

    Returns:
        Meta dataclass containing metadata about the Sintel dataset.
    """

    lum_paths = []
    sequence_indices = []
    frames_per_scene = []
    sequence_index_to_splits = {}
    for i, p in enumerate(sorted((sintel_path / "training/final").iterdir())):
        if len(list(p.iterdir())) - 1 >= n_frames and any(
            p.name in key for key in rendered
        ):
            lum_paths.append(p)
            sequence_indices.append(i)
            frames_per_scene.append(len(list(p.iterdir())))
        sequence_index_to_splits[i] = vertical_splits * i + np.arange(vertical_splits)
    sequence_indices = np.array(sequence_indices)
    frames_per_scene = np.array(frames_per_scene)

    flow_paths = [sintel_path / "training/flow" / path.name for path in lum_paths]
    depth_paths = (
        [sintel_path / "training/depth" / path.name for path in lum_paths]
        if render_depth
        else None
    )
    return SintelMeta(
        lum_paths=lum_paths,
        flow_paths=flow_paths,
        depth_paths=depth_paths,
        sequence_indices=sequence_indices,
        frames_per_scene=frames_per_scene,
        sequence_index_to_splits=sequence_index_to_splits,
    )

original_train_and_validation_indices

original_train_and_validation_indices(dataset)

Get original training and validation indices for the dataloader.

Returns:

Type Description
Tuple[List[int], List[int]]

Tuple containing lists of train and validation indices.

Source code in flyvis/datasets/sintel_utils.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def original_train_and_validation_indices(
    dataset: "flyvis.MultiTaskSintel",
) -> Tuple[List[int], List[int]]:
    """Get original training and validation indices for the dataloader.

    Returns:
        Tuple containing lists of train and validation indices.
    """
    _validation = [
        "ambush_2",
        "bamboo_1",
        "bandage_1",
        "cave_4",
        "market_2",
        "mountain_1",
    ]

    train = [
        "alley_1",
        "alley_2",
        "ambush_4",
        "ambush_5",
        "ambush_6",
        "ambush_7",
        "bamboo_2",
        "bandage_2",
        "cave_2",
        "market_5",
        "market_6",
        "shaman_2",
        "shaman_3",
        "sleeping_1",
        "sleeping_2",
        "temple_2",
        "temple_3",
    ]

    train_indices = [
        i
        for i, name in enumerate(dataset.arg_df.name)
        if any([scene_name in name for scene_name in train])
    ]
    val_indices = [
        i
        for i, name in enumerate(dataset.arg_df.name)
        if any([scene_name in name for scene_name in _validation])
    ]
    # these were dropped by the pytorch dataload because of the chosen
    # batchsize in the original training run
    val_indices.remove(37)
    val_indices.remove(38)
    return train_indices, val_indices

download_sintel

download_sintel(delete_if_exists=False, depth=False)

Download the sintel dataset.

Parameters:

Name Type Description Default
delete_if_exists bool

If True, delete the dataset if it exists and download again.

False
depth bool

If True, download the depth dataset as well.

False

Returns:

Type Description
Path

Path to the sintel dataset.

Source code in flyvis/datasets/sintel_utils.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
def download_sintel(delete_if_exists: bool = False, depth: bool = False) -> Path:
    """Download the sintel dataset.

    Args:
        delete_if_exists: If True, delete the dataset if it exists and download again.
        depth: If True, download the depth dataset as well.

    Returns:
        Path to the sintel dataset.
    """
    sintel_dir = flyvis.sintel_dir
    sintel_dir.mkdir(parents=True, exist_ok=True)

    def exists(depth: bool = False) -> bool:
        try:
            assert sintel_dir.exists()
            assert (sintel_dir / "training").exists()
            assert (sintel_dir / "test").exists()
            assert (sintel_dir / "training/flow").exists()
            if depth:
                assert (sintel_dir / "training/depth").exists()
            return True
        except AssertionError:
            return False

    def download_and_extract(url: str, depth: bool = False) -> None:
        sintel_zip = sintel_dir / Path(url).name

        if not exists(depth=depth) or delete_if_exists:
            logger.info("Downloading Sintel dataset.")
            assert not sintel_zip.exists()
            download_url_to_file(url, sintel_zip)
            logger.info("Extracting Sintel dataset.")
            with zipfile.ZipFile(sintel_zip, "r") as zip_ref:
                zip_ref.extractall(sintel_dir)
        else:
            logger.info("Found Sintel at %s", sintel_dir)

    download_and_extract(
        "http://files.is.tue.mpg.de/sintel/MPI-Sintel-complete.zip", depth=False
    )
    if depth:
        download_and_extract(
            "http://files.is.tue.mpg.de/jwulff/sintel/MPI-Sintel-depth-training-20150305.zip",
            depth=True,
        )

    assert exists(depth)

    return sintel_dir