Sintel¶
Rendering¶
flyvision.datasets.sintel.RenderedSintel ¶
Bases: Directory
Rendering and referencing rendered sintel data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tasks |
List[str]
|
List of tasks to include in the rendering. May include ‘flow’ or ‘depth’. |
['flow']
|
boxfilter |
Dict[str, int]
|
Key word arguments for the BoxEye filter. |
dict(extent=15, kernel_size=13)
|
vertical_splits |
int
|
Number of vertical splits of each frame. |
3
|
n_frames |
int
|
Number of frames to render for each sequence. |
19
|
center_crop_fraction |
float
|
Fraction of the image to keep after cropping. |
0.7
|
unittest |
bool
|
If True, only renders a single sequence. |
False
|
Attributes:
Name | Type | Description |
---|---|---|
config |
Configuration parameters used for rendering. |
|
sequence_<id>_<name>_split_<j>/lum |
ArrayFile
|
Rendered luminance data (frames, 1, hexals). |
sequence_<id>_<name>_split_<j>/flow |
ArrayFile
|
Rendered flow data (frames, 2, hexals). |
sequence_<id>_<name>_split_<j>/depth |
ArrayFile
|
Rendered depth data (frames, 1, hexals). |
Source code in flyvision/datasets/sintel.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
__call__ ¶
__call__(seq_id)
Returns all rendered data for a given sequence index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seq_id |
int
|
Index of the sequence to retrieve. |
required |
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
Dictionary containing the rendered data for the specified sequence. |
Source code in flyvision/datasets/sintel.py
165 166 167 168 169 170 171 172 173 174 175 176 |
|
Datasets¶
flyvision.datasets.sintel.MultiTaskSintel ¶
Bases: MultiTaskDataset
Sintel dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tasks |
List[str]
|
List of tasks to include. May include ‘flow’, ‘lum’, or ‘depth’. |
['flow']
|
boxfilter |
Dict[str, int]
|
Key word arguments for the BoxEye filter. |
dict(extent=15, kernel_size=13)
|
vertical_splits |
int
|
Number of vertical splits of each frame. |
3
|
n_frames |
int
|
Number of frames to render for each sequence. |
19
|
center_crop_fraction |
float
|
Fraction of the image to keep after cropping. |
0.7
|
dt |
float
|
Sampling and integration time constant. |
1 / 50
|
augment |
bool
|
Turns augmentation on and off. |
True
|
random_temporal_crop |
bool
|
Randomly crops a temporal window of length |
True
|
all_frames |
bool
|
If True, all frames are returned. If False, only |
False
|
resampling |
bool
|
If True, piecewise-constant resamples the input sequence to the target framerate (1/dt). |
True
|
interpolate |
bool
|
If True, linearly interpolates the target sequence to the target framerate (1/dt). |
True
|
p_flip |
float
|
Probability of flipping the sequence across hexagonal axes. |
0.5
|
p_rot |
float
|
Probability of rotating the sequence by n*60 degrees. |
5 / 6
|
contrast_std |
float
|
Standard deviation of the contrast augmentation. |
0.2
|
brightness_std |
float
|
Standard deviation of the brightness augmentation. |
0.1
|
gaussian_white_noise |
float
|
Standard deviation of the pixel-wise gaussian white noise. |
0.08
|
gamma_std |
Optional[float]
|
Standard deviation of the gamma augmentation. |
None
|
_init_cache |
bool
|
If True, caches the dataset in memory. |
True
|
unittest |
bool
|
If True, only renders a single sequence. |
False
|
flip_axes |
List[int]
|
List of axes to flip over. |
[0, 1]
|
Attributes:
Name | Type | Description |
---|---|---|
dt |
float
|
Sampling and integration time constant. |
t_pre |
float
|
Warmup time. |
t_post |
float
|
Cooldown time. |
tasks |
List[str]
|
List of all tasks. |
valid_tasks |
List[str]
|
List of valid task names. |
Raises:
Type | Description |
---|---|
ValueError
|
If any element in tasks is invalid. |
Source code in flyvision/datasets/sintel.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
|
init_cache ¶
init_cache()
Initialize the cache with preprocessed sequences.
Source code in flyvision/datasets/sintel.py
337 338 339 340 341 342 343 344 345 346 |
|
__setattr__ ¶
__setattr__(name, value)
Custom attribute setter to handle special cases and update augmentation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the attribute to set. |
required |
value |
Any
|
Value to set the attribute to. |
required |
Raises:
Type | Description |
---|---|
AttributeError
|
If trying to change framerate or rendered initialization attributes. |
Source code in flyvision/datasets/sintel.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
|
init_augmentation ¶
init_augmentation()
Initialize augmentation callables.
Source code in flyvision/datasets/sintel.py
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
update_augmentation ¶
update_augmentation(name, value)
Update augmentation parameters based on attribute changes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the attribute that changed. |
required |
value |
Any
|
New value of the attribute. |
required |
Source code in flyvision/datasets/sintel.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
set_augmentation_params ¶
set_augmentation_params(
n_rot=None,
flip_axis=None,
contrast_factor=None,
brightness_factor=None,
gaussian_white_noise=None,
gamma=None,
start_frame=None,
total_sequence_length=None,
)
Set augmentation callable parameters.
Info
Called for each call of get_item.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_rot |
Optional[int]
|
Number of rotations to apply. |
None
|
flip_axis |
Optional[int]
|
Axis to flip over. |
None
|
contrast_factor |
Optional[float]
|
Contrast factor for jitter augmentation. |
None
|
brightness_factor |
Optional[float]
|
Brightness factor for jitter augmentation. |
None
|
gaussian_white_noise |
Optional[float]
|
Standard deviation for noise augmentation. |
None
|
gamma |
Optional[float]
|
Gamma value for gamma correction. |
None
|
start_frame |
Optional[int]
|
Starting frame for temporal crop. |
None
|
total_sequence_length |
Optional[int]
|
Total length of the sequence. |
None
|
Source code in flyvision/datasets/sintel.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
get_item ¶
get_item(key)
Return a dataset sample.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the sample to retrieve. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
Dictionary containing the augmented sample data. |
Source code in flyvision/datasets/sintel.py
461 462 463 464 465 466 467 468 469 470 |
|
augmentation ¶
augmentation(abool)
Context manager to turn augmentation on or off in a code block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
abool |
bool
|
Boolean value to set augmentation state. |
required |
Example
with dataset.augmentation(True):
for i, data in enumerate(dataloader):
... # all data is augmented
Source code in flyvision/datasets/sintel.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
|
apply_augmentation ¶
apply_augmentation(
data,
n_rot=None,
flip_axis=None,
contrast_factor=None,
brightness_factor=None,
gaussian_white_noise=None,
gamma=None,
)
Apply augmentation to a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Dict[str, Tensor]
|
Dictionary containing the sample data. |
required |
n_rot |
Optional[int]
|
Number of rotations to apply. |
None
|
flip_axis |
Optional[int]
|
Axis to flip over. |
None
|
contrast_factor |
Optional[float]
|
Contrast factor for jitter augmentation. |
None
|
brightness_factor |
Optional[float]
|
Brightness factor for jitter augmentation. |
None
|
gaussian_white_noise |
Optional[float]
|
Standard deviation for noise augmentation. |
None
|
gamma |
Optional[float]
|
Gamma value for gamma correction. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
Dictionary containing the augmented sample data. |
Source code in flyvision/datasets/sintel.py
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
|
original_sequence_index ¶
original_sequence_index(key)
Get the original sequence index from an index of the split.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the split. |
required |
Returns:
Type | Description |
---|---|
int
|
Original sequence index. |
Raises:
Type | Description |
---|---|
ValueError
|
If the key is not found in splits. |
Source code in flyvision/datasets/sintel.py
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
|
cartesian_sequence ¶
cartesian_sequence(
key,
vertical_splits=None,
outwidth=716,
center_crop_fraction=None,
sampling=slice(1, None, None),
)
Return the cartesian sequence of a fly eye rendered sequence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the sequence. |
required |
vertical_splits |
Optional[int]
|
Number of vertical splits to apply. |
None
|
outwidth |
int
|
Output width of the sequence. |
716
|
center_crop_fraction |
Optional[float]
|
Fraction of the image to keep after cropping. |
None
|
sampling |
slice
|
Slice object for sampling frames. |
slice(1, None, None)
|
Returns:
Type | Description |
---|---|
ndarray
|
Numpy array containing the cartesian sequence. |
Source code in flyvision/datasets/sintel.py
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
|
cartesian_flow ¶
cartesian_flow(
key,
vertical_splits=None,
outwidth=417,
center_crop_fraction=None,
sampling=slice(None, None, None),
)
Return the cartesian flow of a fly eye rendered flow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the sequence. |
required |
vertical_splits |
Optional[int]
|
Number of vertical splits to apply. |
None
|
outwidth |
int
|
Output width of the flow. |
417
|
center_crop_fraction |
Optional[float]
|
Fraction of the image to keep after cropping. |
None
|
sampling |
slice
|
Slice object for sampling frames. |
slice(None, None, None)
|
Returns:
Type | Description |
---|---|
ndarray
|
Numpy array containing the cartesian flow. |
Source code in flyvision/datasets/sintel.py
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
|
cartesian_depth ¶
cartesian_depth(
key,
vertical_splits=None,
outwidth=417,
center_crop_fraction=None,
sampling=slice(1, None, None),
)
Return the cartesian depth of a fly eye rendered depth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the sequence. |
required |
vertical_splits |
Optional[int]
|
Number of vertical splits to apply. |
None
|
outwidth |
int
|
Output width of the depth. |
417
|
center_crop_fraction |
Optional[float]
|
Fraction of the image to keep after cropping. |
None
|
sampling |
slice
|
Slice object for sampling frames. |
slice(1, None, None)
|
Returns:
Type | Description |
---|---|
ndarray
|
Numpy array containing the cartesian depth. |
Source code in flyvision/datasets/sintel.py
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
|
original_train_and_validation_indices ¶
original_train_and_validation_indices()
Get original training and validation indices for the dataloader.
Returns:
Type | Description |
---|---|
Tuple[List[int], List[int]]
|
Tuple containing lists of train and validation indices. |
Source code in flyvision/datasets/sintel.py
714 715 716 717 718 719 720 |
|
flyvision.datasets.sintel.AugmentedSintel ¶
Bases: MultiTaskSintel
Sintel dataset with controlled, rich augmentation.
Info
Returns deterministic augmented dataset to evaluate networks on a richer dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_frames |
int
|
Number of sequence frames to sample from. |
19
|
flip_axes |
List[int]
|
List of axes to flip over. |
[0, 1]
|
n_rotations |
List[int]
|
List of number of rotations to perform. |
[0, 1, 2, 3, 4, 5]
|
temporal_split |
bool
|
Enable temporally controlled augmentation (experimental). |
False
|
build_stim_on_init |
bool
|
Build the augmented stimulus in cache. |
True
|
dt |
float
|
Integration and sampling time constant. |
1 / 50
|
tasks |
List[Literal['flow', 'depth', 'lum']]
|
List of tasks to include. May include ‘flow’, ‘lum’, or ‘depth’. |
['flow']
|
interpolate |
bool
|
If True, linearly interpolates the target sequence to the target framerate. |
True
|
all_frames |
bool
|
If True, all frames are returned. If False, only |
False
|
random_temporal_crop |
bool
|
Randomly crops a temporal window of length |
False
|
boxfilter |
Dict[str, int]
|
Key word arguments for the BoxEye filter. |
dict(extent=15, kernel_size=13)
|
vertical_splits |
int
|
Number of vertical splits of each frame. |
3
|
contrast_std |
Optional[float]
|
Standard deviation of the contrast augmentation. |
None
|
brightness_std |
Optional[float]
|
Standard deviation of the brightness augmentation. |
None
|
gaussian_white_noise |
Optional[float]
|
Standard deviation of the pixel-wise gaussian white noise. |
None
|
gamma_std |
Optional[float]
|
Standard deviation of the gamma augmentation. |
None
|
center_crop_fraction |
float
|
Fraction of the image to keep after cropping. |
0.7
|
indices |
Optional[List[int]]
|
Indices of the sequences to include. |
None
|
unittest |
bool
|
If True, only renders a single sequence. |
False
|
Attributes:
Name | Type | Description |
---|---|---|
cached_sequences |
List[Dict[str, Tensor]]
|
List of preprocessed sequences for fast dataloading. |
valid_flip_axes |
List[int]
|
List of valid flip axes. |
valid_rotations |
List[int]
|
List of valid rotation values. |
flip_axes |
List[int]
|
List of axes to flip over. |
n_rotations |
List[int]
|
List of number of rotations to perform. |
temporal_split |
bool
|
Flag for temporally controlled augmentation. |
_built |
bool
|
Flag indicating if the dataset has been built. |
params |
List
|
List of augmentation parameters for each sequence. |
arg_df |
DataFrame
|
DataFrame containing augmentation parameters for each sequence. |
Source code in flyvision/datasets/sintel.py
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
|
pad_nans ¶
pad_nans(data, pad_to_length=None)
Pad the data with NaNs to a specified length.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Dict[str, Tensor]
|
Dictionary containing the data to pad. |
required |
pad_to_length |
Optional[int]
|
Length to pad the data to. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
Padded data dictionary. |
Source code in flyvision/datasets/sintel.py
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
|
get_item ¶
get_item(key, pad_to_length=None)
Get a single item from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
int
|
Index of the item to retrieve. |
required |
pad_to_length |
Optional[int]
|
Length to pad the data to. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
Dictionary containing the retrieved data. |
Source code in flyvision/datasets/sintel.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
|
Utils¶
flyvision.datasets.sintel_utils ¶
load_sequence ¶
load_sequence(
path, sample_function, start=0, end=None, as_tensor=True
)
Calls sample_function on each file in the sorted path and returns a concatenation of the results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Path
|
Path to the directory containing the sequence files. |
required |
sample_function |
Callable
|
Function to apply to each file in the sequence. |
required |
start |
int
|
Starting index for file selection. |
0
|
end |
Optional[int]
|
Ending index for file selection. |
None
|
as_tensor |
bool
|
If True, returns a PyTorch tensor; otherwise, returns a NumPy array. |
True
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
Concatenated sequence data as either a PyTorch tensor or NumPy array. |
Source code in flyvision/datasets/sintel_utils.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
sample_lum ¶
sample_lum(path)
Sample luminance data from an image file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Path
|
Path to the image file. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Normalized luminance data as a NumPy array. |
Source code in flyvision/datasets/sintel_utils.py
48 49 50 51 52 53 54 55 56 57 58 |
|
sample_flow ¶
sample_flow(path)
Sample optical flow data from a file.
Note: Flow is in units of pixel / image_height and with inverted negative y coordinate (i.e. y-axis pointing upwards in image plane).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Path
|
Path to the flow data file. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Optical flow data as a NumPy array. |
Source code in flyvision/datasets/sintel_utils.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
sample_depth ¶
sample_depth(filename)
Sample depth data from a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
Path
|
Path to the depth data file. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Depth data as a NumPy array. |
Source code in flyvision/datasets/sintel_utils.py
82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
temporal_split_cached_samples ¶
temporal_split_cached_samples(
cached_sequences, max_frames, split=True
)
Deterministically split sequences in time dimension into regularly binned sequences.
Note
Overlapping splits of sequences which lengths are not an integer multiple of
max_frames
contain repeating frames.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cached_sequences |
List[Dict[str, Tensor]]
|
Ordered list of dicts of sequences of shape (n_frames, n_features, n_hexals). |
required |
max_frames |
int
|
Maximum number of frames per split. |
required |
split |
bool
|
Whether to perform the temporal split. |
True
|
Returns:
Type | Description |
---|---|
List[Dict[str, Tensor]]
|
Tuple containing: |
ndarray
|
|
Tuple[List[Dict[str, Tensor]], ndarray]
|
|
Source code in flyvision/datasets/sintel_utils.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
temporal_split_sequence ¶
temporal_split_sequence(sequence, max_frames)
Split a sequence along the temporal dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sequence |
Union[ndarray, Tensor]
|
Array or tensor of shape (n_frames, n_features, n_hexals). |
required |
max_frames |
int
|
Maximum number of frames per split. |
required |
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
Array or tensor of shape (splits, max_frames, n_features, n_hexals). |
Notes
The number of splits is computed as int(np.round(n_frames / max_frames)).
Source code in flyvision/datasets/sintel_utils.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
remove_nans ¶
remove_nans(responses)
Remove NaNs from responses array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
responses |
ndarray
|
Array of shape (sample, frames, channels). |
required |
Returns:
Type | Description |
---|---|
List[ndarray]
|
List of arrays with NaNs removed, potentially of different sizes. |
Source code in flyvision/datasets/sintel_utils.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
sintel_meta ¶
sintel_meta(
rendered,
sintel_path,
n_frames,
vertical_splits,
render_depth,
)
Returns a dataclass with meta information about the (rendered) sintel dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rendered |
RenderedSintel
|
RenderedSintel object containing the rendered data. |
required |
sintel_path |
Path
|
Path to the Sintel dataset. |
required |
n_frames |
int
|
Number of frames to consider for each sequence. |
required |
vertical_splits |
int
|
Number of vertical splits for each frame. |
required |
render_depth |
bool
|
Whether depth data is rendered. |
required |
Returns:
Type | Description |
---|---|
SintelMeta
|
Meta dataclass containing metadata about the Sintel dataset. |
Source code in flyvision/datasets/sintel_utils.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
original_train_and_validation_indices ¶
original_train_and_validation_indices(dataset)
Get original training and validation indices for the dataloader.
Returns:
Type | Description |
---|---|
Tuple[List[int], List[int]]
|
Tuple containing lists of train and validation indices. |
Source code in flyvision/datasets/sintel_utils.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
download_sintel ¶
download_sintel(delete_if_exists=False, depth=False)
Download the sintel dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delete_if_exists |
bool
|
If True, delete the dataset if it exists and download again. |
False
|
depth |
bool
|
If True, download the depth dataset as well. |
False
|
Returns:
Type | Description |
---|---|
Path
|
Path to the sintel dataset. |
Source code in flyvision/datasets/sintel_utils.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|