Skip to content

Moving Stimulus Responses

Rendering

flyvision.datasets.moving_bar.RenderedOffsets

Bases: Directory

Rendered offsets for the moving bar stimulus.

This class precomputes the offsets for moving bar (edge) stimuli and stores them in a directory. At runtime, the offsets are resampled to efficiently generate stimuli with different durations and temporal resolutions.

Parameters:

Name Type Description Default
offsets list[int]

List of offset values.

list(range(-10, 11))
angles list[int]

List of angle values in degrees.

[0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330]
widths list[int]

List of width values.

[1, 2, 4]
intensities list[int]

List of intensity values.

[0, 1]
led_width float

Width of LED in radians.

radians(2.25)
height float

Height of the bar in radians.

radians(2.25) * 9
n_bars int

Number of bars.

1
bg_intensity float

Background intensity.

0.5
bar_loc_horizontal float

Horizontal location of the bar in radians.

radians(90)

Attributes:

Name Type Description
offsets ArrayFile

Rendered offsets for different stimulus parameters.

Source code in flyvision/datasets/moving_bar.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@root(renderings_dir)
class RenderedOffsets(Directory):
    """Rendered offsets for the moving bar stimulus.

    This class precomputes the offsets for moving bar (edge) stimuli and stores them
    in a directory. At runtime, the offsets are resampled to efficiently generate
    stimuli with different durations and temporal resolutions.

    Args:
        offsets: List of offset values.
        angles: List of angle values in degrees.
        widths: List of width values.
        intensities: List of intensity values.
        led_width: Width of LED in radians.
        height: Height of the bar in radians.
        n_bars: Number of bars.
        bg_intensity: Background intensity.
        bar_loc_horizontal: Horizontal location of the bar in radians.

    Attributes:
        offsets (ArrayFile): Rendered offsets for different stimulus parameters.
    """

    def __init__(
        self,
        offsets: list[int] = list(range(-10, 11)),
        angles: list[int] = [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330],
        widths: list[int] = [1, 2, 4],
        intensities: list[int] = [0, 1],
        led_width: float = np.radians(2.25),
        height: float = np.radians(2.25) * 9,
        n_bars: int = 1,
        bg_intensity: float = 0.5,
        bar_loc_horizontal: float = np.radians(90),
    ):
        eye = HexEye(721, 25)

        params = list(product(angles, widths, intensities))

        sequences = {}
        _tqdm = tqdm(total=len(params), desc="building stimuli")
        for angle in angles:
            for width in widths:
                for intensity in intensities:
                    offset_bars = eye.render_offset_bars(
                        bar_width_rad=width * led_width,
                        bar_height_rad=height,
                        n_bars=n_bars,
                        offsets=np.array(offsets) * led_width,
                        bar_intensity=intensity,
                        bg_intensity=bg_intensity,
                        moving_angle=angle,
                        bar_loc_horizontal=bar_loc_horizontal,
                    )
                    sequences[(angle, width, intensity)] = offset_bars
                    _tqdm.update()

        _tqdm.close()
        self.offsets = torch.stack([sequences[p] for p in params]).cpu().numpy()

Datasets

flyvision.datasets.moving_bar.MovingBar

Bases: StimulusDataset

Moving bar stimulus.

Parameters:

Name Type Description Default
widths list[int]

Width of the bar in half ommatidia.

[1, 2, 4]
offsets tuple[int, int]

First and last offset to the central column in half ommatidia.

(-10, 11)
intensities list[float]

Intensity of the bar.

[0, 1]
speeds list[float]

Speed of the bar in half ommatidia per second.

[2.4, 4.8, 9.7, 13, 19, 25]
height int

Height of the bar in half ommatidia.

9
dt float

Time step in seconds.

1 / 200
device str

Device to store the stimulus.

device
bar_loc_horizontal float

Horizontal location of the bar in radians from left to right of image plane. np.radians(90) is the center.

radians(90)
post_pad_mode Literal['continue', 'value', 'reflect']

Padding mode after the stimulus. One of ‘continue’, ‘value’, ‘reflect’. If ‘value’ the padding is filled with bg_intensity.

'value'
t_pre float

Time before the stimulus in seconds.

1.0
t_post float

Time after the stimulus in seconds.

1.0
build_stim_on_init bool

Build the stimulus on initialization.

True
shuffle_offsets bool

Shuffle the offsets to remove spatio-temporal correlation.

False
seed int

Seed for the random state.

0
angles list[int]

List of angles in degrees.

[0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330]

Attributes:

Name Type Description
config Namespace

Configuration parameters.

omm_width float

Width of ommatidium in radians.

led_width float

Width of LED in radians.

angles ndarray

Array of angles in degrees.

widths ndarray

Array of widths in half ommatidia.

offsets ndarray

Array of offsets in half ommatidia.

intensities ndarray

Array of intensities.

speeds ndarray

Array of speeds in half ommatidia per second.

bg_intensity float

Background intensity.

n_bars int

Number of bars.

bar_loc_horizontal float

Horizontal location of bar in radians.

t_stim ndarray

Stimulation times for each speed.

t_stim_max float

Maximum stimulation time.

height float

Height of bar in radians.

post_pad_mode str

Padding mode after the stimulus.

arg_df DataFrame

DataFrame of stimulus parameters.

arg_group_df DataFrame

Grouped DataFrame of stimulus parameters.

device str

Device for storing stimuli.

shuffle_offsets bool

Whether to shuffle offsets.

randomstate RandomState

Random state for shuffling.

Source code in flyvision/datasets/moving_bar.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
class MovingBar(StimulusDataset):
    """Moving bar stimulus.

    Args:
        widths: Width of the bar in half ommatidia.
        offsets: First and last offset to the central column in half ommatidia.
        intensities: Intensity of the bar.
        speeds: Speed of the bar in half ommatidia per second.
        height: Height of the bar in half ommatidia.
        dt: Time step in seconds.
        device: Device to store the stimulus.
        bar_loc_horizontal: Horizontal location of the bar in radians from left to
            right of image plane. np.radians(90) is the center.
        post_pad_mode: Padding mode after the stimulus. One of 'continue', 'value',
            'reflect'. If 'value' the padding is filled with `bg_intensity`.
        t_pre: Time before the stimulus in seconds.
        t_post: Time after the stimulus in seconds.
        build_stim_on_init: Build the stimulus on initialization.
        shuffle_offsets: Shuffle the offsets to remove spatio-temporal correlation.
        seed: Seed for the random state.
        angles: List of angles in degrees.

    Attributes:
        config (Namespace): Configuration parameters.
        omm_width (float): Width of ommatidium in radians.
        led_width (float): Width of LED in radians.
        angles (np.ndarray): Array of angles in degrees.
        widths (np.ndarray): Array of widths in half ommatidia.
        offsets (np.ndarray): Array of offsets in half ommatidia.
        intensities (np.ndarray): Array of intensities.
        speeds (np.ndarray): Array of speeds in half ommatidia per second.
        bg_intensity (float): Background intensity.
        n_bars (int): Number of bars.
        bar_loc_horizontal (float): Horizontal location of bar in radians.
        t_stim (np.ndarray): Stimulation times for each speed.
        t_stim_max (float): Maximum stimulation time.
        height (float): Height of bar in radians.
        post_pad_mode (str): Padding mode after the stimulus.
        arg_df (pd.DataFrame): DataFrame of stimulus parameters.
        arg_group_df (pd.DataFrame): Grouped DataFrame of stimulus parameters.
        device (str): Device for storing stimuli.
        shuffle_offsets (bool): Whether to shuffle offsets.
        randomstate (np.random.RandomState): Random state for shuffling.
    """

    arg_df: pd.DataFrame = None

    def __init__(
        self,
        widths: list[int] = [1, 2, 4],
        offsets: tuple[int, int] = (-10, 11),
        intensities: list[float] = [0, 1],
        speeds: list[float] = [2.4, 4.8, 9.7, 13, 19, 25],
        height: int = 9,
        dt: float = 1 / 200,
        device: str = flyvision.device,
        bar_loc_horizontal: float = np.radians(90),
        post_pad_mode: Literal["continue", "value", "reflect"] = "value",
        t_pre: float = 1.0,
        t_post: float = 1.0,
        build_stim_on_init: bool = True,
        shuffle_offsets: bool = False,
        seed: int = 0,
        angles: list[int] = [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330],
    ) -> None:
        super().__init__()
        # HexEye parameter
        self.omm_width = np.radians(5.8)  # radians(5.8 degree)

        # Monitor parameter
        self.led_width = np.radians(2.25)  # Gruntman et al. 2018

        _locals = locals()
        self.config = Namespace({
            arg: _locals[arg]
            for arg in [
                "widths",
                "offsets",
                "intensities",
                "speeds",
                "height",
                "bar_loc_horizontal",
                "shuffle_offsets",
                "post_pad_mode",
                "t_pre",
                "t_post",
                "dt",
                "angles",
            ]
        })

        # Stim parameter
        self.angles = np.array(angles)
        self.widths = np.array(widths)  # half ommatidia
        if len(offsets) == 2:
            self.offsets = np.arange(*offsets)  # half ommatidia
        else:
            assert (
                np.mean(offsets[1:] - offsets[:-1]) == 1
            )  # t_stim assumes spacing of 1 corresponding to 2.25 deg
            self.offsets = offsets
        self.intensities = np.array(intensities)
        self.speeds = np.array(speeds)
        self.bg_intensity = 0.5
        self.n_bars = 1
        self.bar_loc_horizontal = bar_loc_horizontal

        self.t_stim = (len(self.offsets) * self.led_width) / (
            self.speeds * self.omm_width
        )
        self.t_stim_max = np.max(self.t_stim)

        self._speed_to_t_stim = dict(zip(self.speeds, self.t_stim))

        self.height = self.led_width * height

        self.post_pad_mode = post_pad_mode
        self._t_pre = t_pre
        self._t_post = t_post

        params = [
            (*p[:-1], *p[-1])
            for p in list(
                product(
                    self.angles,
                    self.widths,
                    self.intensities,
                    zip(self.t_stim, self.speeds),
                )
            )
        ]
        self.arg_df = pd.DataFrame(
            params, columns=["angle", "width", "intensity", "t_stim", "speed"]
        )

        self.arg_group_df = self.arg_df.groupby(
            ["angle", "width", "intensity"], sort=False, as_index=False
        ).all()

        self.device = device
        self.shuffle_offsets = shuffle_offsets
        self.randomstate = None
        if self.shuffle_offsets:
            self.randomstate = np.random.RandomState(seed=seed)

        self._dt = dt

        self._built = False
        if build_stim_on_init:
            self._build()
            self._resample()
            self._built = True

    @property
    def dt(self) -> float:
        """Time step in seconds."""
        return getattr(self, "_dt", None)

    @dt.setter
    def dt(self, value: float) -> None:
        if self._dt == value:
            self._dt = value
            if self._built:
                self._resample()
            return
        logging.warning(
            "Cannot override dt=%s because responses with dt=%s are initialized. "
            "Keeping dt=%s.",
            value,
            self._dt,
            self._dt,
        )

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}\n"
            + "Config:\n"
            + repr(self.config)
            + "Stimulus parameter:\n"
            + repr(self.arg_df)
        )

    @property
    def t_pre(self) -> float:
        """Time before stimulus onset in seconds."""
        return self._t_pre

    @property
    def t_post(self) -> float:
        """Time after stimulus offset in seconds."""
        return self._t_post

    def _build(self) -> None:
        """Build the stimulus."""
        self.wrap = RenderedOffsets(
            dict(
                angles=self.angles,
                widths=self.widths,
                intensities=self.intensities,
                offsets=self.offsets,
                led_width=self.led_width,
                height=self.height,
                n_bars=self.n_bars,
                bg_intensity=self.bg_intensity,
                bar_loc_horizontal=self.bar_loc_horizontal,
            )
        )

        self._offsets = torch.tensor(self.wrap.offsets[:], device=self.device)
        self._built = True

    def _resample(self) -> None:
        """Resample the stimulus at runtime."""
        # resampling at runtime to allow for changing dt and to save GB of
        # storage.
        self.sequences = {}
        self.indices = {}
        for t, speed in zip(self.t_stim, self.speeds):
            sequence, indices = resample(
                self._offsets,
                t,
                self.dt,
                dim=1,
                device=self.device,
                return_indices=True,
            )
            if self.shuffle_offsets:
                # breakpoint()
                sequence = shuffle(sequence, self.randomstate)
            sequence = pad(
                sequence,
                t + self.t_pre,
                self.dt,
                mode="start",
                fill=self.bg_intensity,
            )
            sequence = pad(
                sequence,
                t + self.t_pre + self.t_post,
                self.dt,
                mode="end",
                pad_mode=self.post_pad_mode,
                fill=self.bg_intensity,
            )
            # Because we fix the distance that the bar moves but vary speeds we
            # have different stimulation times. To make all sequences equal
            # length for storing them in a single tensor, we pad them with nans
            # based on the maximal stimulation time (slowest speed). The nans
            # can later be removed before processing the traces.
            sequence = pad(
                sequence,
                self.t_stim_max + self.t_pre + self.t_post,
                self.dt,
                mode="end",
                fill=np.nan,
            )
            self.sequences[speed] = sequence
            self.indices[speed] = indices

    def _key(self, angle: float, width: float, intensity: float, speed: float) -> int:
        """Get the key for a specific stimulus configuration."""
        try:
            return self.arg_df.query(
                f"angle=={angle}"
                f" & width=={width}"
                f" & intensity == {intensity}"
                f" & speed == {speed}"
            ).index.values.item()
        except ValueError:
            raise ValueError(
                f"angle: {angle}, width: {width}, intensity: {intensity}, "
                f"speed: {speed} invalid."
            ) from None

    def get_sequence_id_from_arguments(
        self, angle: float, width: float, intensity: float, speed: float
    ) -> int:
        """Get sequence ID from stimulus arguments."""
        return self.get_stimulus_index(locals())

    def _params(self, key: int) -> np.ndarray:
        """Get parameters for a given key."""
        return self.arg_df.iloc[key].values

    def _group_key(self, angle: float, width: float, intensity: float) -> int:
        """Get group key for a specific stimulus configuration."""
        return self.arg_group_df.query(
            f"angle=={angle}" f" & width=={width}" f" & intensity == {intensity}"
        ).index.values.item()

    def _group_params(self, key: int) -> np.ndarray:
        """Get group parameters for a given key."""
        return self.arg_group_df.iloc[key].values

    def get(
        self, angle: float, width: float, intensity: float, speed: float
    ) -> torch.Tensor:
        """Get stimulus for specific parameters."""
        key = self._key(angle, width, intensity, speed)
        return self[key]

    def get_item(self, key: int) -> torch.Tensor:
        """Get stimulus for a specific key."""
        angle, width, intensity, _, speed = self._params(key)
        return self.sequences[speed][self._group_key(angle, width, intensity)]

    def mask(
        self,
        angle: Optional[float] = None,
        width: Optional[float] = None,
        intensity: Optional[float] = None,
        speed: Optional[float] = None,
        t_stim: Optional[float] = None,
    ) -> np.ndarray:
        """Create a mask for specific stimulus parameters."""
        # 22x faster than df.query
        values = self.arg_df.values

        def iterparam(param, name, axis, and_condition):
            condition = np.zeros(len(values)).astype(bool)
            if isinstance(param, Iterable):
                for p in param:
                    _new = values.take(axis, axis=1) == p
                    assert any(_new), f"{name} {p} not in dataset."
                    condition = np.logical_or(condition, _new)
            else:
                _new = values.take(axis, axis=1) == param
                assert any(_new), f"{name} {param} not in dataset."
                condition = np.logical_or(condition, _new)
            return condition & and_condition

        condition = np.ones(len(values)).astype(bool)
        if angle is not None:
            condition = iterparam(angle, "angle", 0, condition)
        if width is not None:
            condition = iterparam(width, "width", 1, condition)
        if intensity is not None:
            condition = iterparam(intensity, "intensity", 2, condition)
        if t_stim is not None:
            condition = iterparam(t_stim, "t_stim", 3, condition)
        if speed is not None:
            condition = iterparam(speed, "speed", 4, condition)
        return condition

    @property
    def time(self) -> np.ndarray:
        """Time array for the stimulus."""
        return np.arange(-self.t_pre, self.t_stim_max + self.t_post - self.dt, self.dt)

    def stimulus(
        self,
        angle: Optional[float] = None,
        width: Optional[float] = None,
        intensity: Optional[float] = None,
        speed: Optional[float] = None,
        pre_stim: bool = True,
        post_stim: bool = True,
    ) -> np.ndarray:
        """Get stimulus for specific parameters.

        Args:
            angle: Angle of the bar.
            width: Width of the bar.
            intensity: Intensity of the bar.
            speed: Speed of the bar.
            pre_stim: Include pre-stimulus period.
            post_stim: Include post-stimulus period.

        Returns:
            Stimulus array.
        """
        key = self._key(angle, width, intensity, speed)
        stim = self[key][:, 360].cpu().numpy()
        if not post_stim:
            stim = filter_post([stim], self.t_post, self.dt).squeeze()
        if not pre_stim:
            stim = filter_pre(stim[None], self.t_pre, self.dt).squeeze()
        return stim

    def stimulus_parameters(
        self,
        angle: Optional[float] = None,
        width: Optional[float] = None,
        intensity: Optional[float] = None,
        speed: Optional[float] = None,
    ) -> tuple[list, ...]:
        """Get stimulus parameters."""

        def _number_to_list(*args):
            returns = tuple()
            for arg in args:
                if isinstance(arg, Number):
                    returns += ([arg],)
                else:
                    returns += (arg,)
            return returns

        angle, width, speed, intensity = _number_to_list(angle, width, speed, intensity)
        angle = angle or self.angles
        width = width or self.widths
        intensity = intensity or self.intensities
        speed = speed or self.speeds
        return angle, width, intensity, speed

    def sample_shape(
        self,
        angle: Optional[float] = None,
        width: Optional[float] = None,
        intensity: Optional[float] = None,
        speed: Optional[float] = None,
    ) -> tuple[int, ...]:
        """Get shape of stimulus sample for given parameters."""
        if isinstance(angle, Number):
            angle = [angle]
        if isinstance(width, Number):
            width = [width]
        if isinstance(speed, Number):
            speed = [speed]
        if isinstance(intensity, Number):
            intensity = [intensity]
        angle = angle or self.angles
        width = width or self.widths
        intensity = intensity or self.intensities
        speed = speed or self.speeds
        return (
            len(angle),
            len(width),
            len(intensity),
            len(speed),
        )

    def time_to_center(self, speed: float) -> float:
        """Calculate time for bar to reach center at given speed."""
        # Note: time = distance / velocity, i.e.
        #     time = (n_leds * led_width) / (speed * omm_width)
        #     with speed in ommatidia / s.
        return np.abs(self.config.offsets[0]) * self.led_width / (speed * self.omm_width)

    def get_time_with_origin_at_onset(self) -> np.ndarray:
        """Get time array with origin at stimulus onset."""
        return np.linspace(
            -self.t_pre,
            self.t_stim_max - self.t_pre + self.t_post,
            int(self.t_stim_max / self.dt)
            + int(self.t_post / self.dt)
            + int(self.t_pre / self.dt),
        )

    def get_time_with_origin_at_center(self, speed: float) -> np.ndarray:
        """Get time array with origin where bar reaches central column."""
        time_to_center = self.time_to_center(speed)
        n_steps = (
            int(self.t_stim_max / self.dt)
            + int(self.t_post / self.dt)
            + int(self.t_pre / self.dt)
        )
        return np.linspace(
            -(self.t_pre + time_to_center),
            n_steps * self.dt - (self.t_pre + time_to_center),
            n_steps,
        )

    def stimulus_cartoon(
        self,
        angle: float,
        width: float,
        intensity: float,
        speed: float,
        time_after_stimulus_onset: float = 0.5,
        fig: Optional[plt.Figure] = None,
        ax: Optional[plt.Axes] = None,
        facecolor: str = "#000000",
        cmap: Colormap = plt.cm.bone,
        alpha: float = 0.5,
        vmin: float = 0,
        vmax: float = 1,
        edgecolor: str = "none",
        central_hex_color: str = "#2f7cb9",
        **kwargs,
    ) -> tuple[plt.Figure, plt.Axes]:
        """Create a cartoon representation of the stimulus."""
        fig, ax = init_plot(fig=fig, ax=ax)

        time = (
            np.arange(
                0,
                self.t_pre + self.t_stim_max + self.t_post - self.dt,
                self.dt,
            )
            - self.t_pre
        )
        index = np.argmin(np.abs(time - time_after_stimulus_onset))

        fig, ax, _ = quick_hex_scatter(
            self.get(angle=angle, width=width, speed=speed, intensity=intensity)
            .cpu()
            .numpy()[index],
            vmin=vmin,
            vmax=vmax,
            cbar=False,
            figsize=[1, 1],
            max_extent=5,
            fig=fig,
            ax=ax,
            cmap=cmap,
            alpha=alpha,
            edgecolor=edgecolor,
            **kwargs,
        )
        rotation = np.array([
            [
                np.cos(np.radians(angle - 90)),
                -np.sin(np.radians(angle - 90)),
            ],
            [
                np.sin(np.radians(angle - 90)),
                np.cos(np.radians(angle - 90)),
            ],
        ])
        x = rotation @ np.array([0, -5])
        dx = rotation @ np.array([0, 1])
        ax.arrow(
            *x,
            *dx,
            facecolor=facecolor,
            width=0.75,
            head_length=2.5,
            edgecolor="k",
            linewidth=0.25,
        )
        _hex = RegularPolygon(
            (0, 0),
            numVertices=6,
            radius=1,
            linewidth=1,
            orientation=np.radians(30),
            edgecolor=central_hex_color,
            facecolor=central_hex_color,
            alpha=1,
            ls="-",
        )
        ax.add_patch(_hex)

        return fig, ax

dt property writable

dt

Time step in seconds.

t_pre property

t_pre

Time before stimulus onset in seconds.

t_post property

t_post

Time after stimulus offset in seconds.

time property

time

Time array for the stimulus.

get_sequence_id_from_arguments

get_sequence_id_from_arguments(
    angle, width, intensity, speed
)

Get sequence ID from stimulus arguments.

Source code in flyvision/datasets/moving_bar.py
365
366
367
368
369
def get_sequence_id_from_arguments(
    self, angle: float, width: float, intensity: float, speed: float
) -> int:
    """Get sequence ID from stimulus arguments."""
    return self.get_stimulus_index(locals())

get

get(angle, width, intensity, speed)

Get stimulus for specific parameters.

Source code in flyvision/datasets/moving_bar.py
385
386
387
388
389
390
def get(
    self, angle: float, width: float, intensity: float, speed: float
) -> torch.Tensor:
    """Get stimulus for specific parameters."""
    key = self._key(angle, width, intensity, speed)
    return self[key]

get_item

get_item(key)

Get stimulus for a specific key.

Source code in flyvision/datasets/moving_bar.py
392
393
394
395
def get_item(self, key: int) -> torch.Tensor:
    """Get stimulus for a specific key."""
    angle, width, intensity, _, speed = self._params(key)
    return self.sequences[speed][self._group_key(angle, width, intensity)]

mask

mask(
    angle=None,
    width=None,
    intensity=None,
    speed=None,
    t_stim=None,
)

Create a mask for specific stimulus parameters.

Source code in flyvision/datasets/moving_bar.py
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def mask(
    self,
    angle: Optional[float] = None,
    width: Optional[float] = None,
    intensity: Optional[float] = None,
    speed: Optional[float] = None,
    t_stim: Optional[float] = None,
) -> np.ndarray:
    """Create a mask for specific stimulus parameters."""
    # 22x faster than df.query
    values = self.arg_df.values

    def iterparam(param, name, axis, and_condition):
        condition = np.zeros(len(values)).astype(bool)
        if isinstance(param, Iterable):
            for p in param:
                _new = values.take(axis, axis=1) == p
                assert any(_new), f"{name} {p} not in dataset."
                condition = np.logical_or(condition, _new)
        else:
            _new = values.take(axis, axis=1) == param
            assert any(_new), f"{name} {param} not in dataset."
            condition = np.logical_or(condition, _new)
        return condition & and_condition

    condition = np.ones(len(values)).astype(bool)
    if angle is not None:
        condition = iterparam(angle, "angle", 0, condition)
    if width is not None:
        condition = iterparam(width, "width", 1, condition)
    if intensity is not None:
        condition = iterparam(intensity, "intensity", 2, condition)
    if t_stim is not None:
        condition = iterparam(t_stim, "t_stim", 3, condition)
    if speed is not None:
        condition = iterparam(speed, "speed", 4, condition)
    return condition

stimulus

stimulus(
    angle=None,
    width=None,
    intensity=None,
    speed=None,
    pre_stim=True,
    post_stim=True,
)

Get stimulus for specific parameters.

Parameters:

Name Type Description Default
angle Optional[float]

Angle of the bar.

None
width Optional[float]

Width of the bar.

None
intensity Optional[float]

Intensity of the bar.

None
speed Optional[float]

Speed of the bar.

None
pre_stim bool

Include pre-stimulus period.

True
post_stim bool

Include post-stimulus period.

True

Returns:

Type Description
ndarray

Stimulus array.

Source code in flyvision/datasets/moving_bar.py
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def stimulus(
    self,
    angle: Optional[float] = None,
    width: Optional[float] = None,
    intensity: Optional[float] = None,
    speed: Optional[float] = None,
    pre_stim: bool = True,
    post_stim: bool = True,
) -> np.ndarray:
    """Get stimulus for specific parameters.

    Args:
        angle: Angle of the bar.
        width: Width of the bar.
        intensity: Intensity of the bar.
        speed: Speed of the bar.
        pre_stim: Include pre-stimulus period.
        post_stim: Include post-stimulus period.

    Returns:
        Stimulus array.
    """
    key = self._key(angle, width, intensity, speed)
    stim = self[key][:, 360].cpu().numpy()
    if not post_stim:
        stim = filter_post([stim], self.t_post, self.dt).squeeze()
    if not pre_stim:
        stim = filter_pre(stim[None], self.t_pre, self.dt).squeeze()
    return stim

stimulus_parameters

stimulus_parameters(
    angle=None, width=None, intensity=None, speed=None
)

Get stimulus parameters.

Source code in flyvision/datasets/moving_bar.py
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
def stimulus_parameters(
    self,
    angle: Optional[float] = None,
    width: Optional[float] = None,
    intensity: Optional[float] = None,
    speed: Optional[float] = None,
) -> tuple[list, ...]:
    """Get stimulus parameters."""

    def _number_to_list(*args):
        returns = tuple()
        for arg in args:
            if isinstance(arg, Number):
                returns += ([arg],)
            else:
                returns += (arg,)
        return returns

    angle, width, speed, intensity = _number_to_list(angle, width, speed, intensity)
    angle = angle or self.angles
    width = width or self.widths
    intensity = intensity or self.intensities
    speed = speed or self.speeds
    return angle, width, intensity, speed

sample_shape

sample_shape(
    angle=None, width=None, intensity=None, speed=None
)

Get shape of stimulus sample for given parameters.

Source code in flyvision/datasets/moving_bar.py
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
def sample_shape(
    self,
    angle: Optional[float] = None,
    width: Optional[float] = None,
    intensity: Optional[float] = None,
    speed: Optional[float] = None,
) -> tuple[int, ...]:
    """Get shape of stimulus sample for given parameters."""
    if isinstance(angle, Number):
        angle = [angle]
    if isinstance(width, Number):
        width = [width]
    if isinstance(speed, Number):
        speed = [speed]
    if isinstance(intensity, Number):
        intensity = [intensity]
    angle = angle or self.angles
    width = width or self.widths
    intensity = intensity or self.intensities
    speed = speed or self.speeds
    return (
        len(angle),
        len(width),
        len(intensity),
        len(speed),
    )

time_to_center

time_to_center(speed)

Calculate time for bar to reach center at given speed.

Source code in flyvision/datasets/moving_bar.py
522
523
524
525
526
527
def time_to_center(self, speed: float) -> float:
    """Calculate time for bar to reach center at given speed."""
    # Note: time = distance / velocity, i.e.
    #     time = (n_leds * led_width) / (speed * omm_width)
    #     with speed in ommatidia / s.
    return np.abs(self.config.offsets[0]) * self.led_width / (speed * self.omm_width)

get_time_with_origin_at_onset

get_time_with_origin_at_onset()

Get time array with origin at stimulus onset.

Source code in flyvision/datasets/moving_bar.py
529
530
531
532
533
534
535
536
537
def get_time_with_origin_at_onset(self) -> np.ndarray:
    """Get time array with origin at stimulus onset."""
    return np.linspace(
        -self.t_pre,
        self.t_stim_max - self.t_pre + self.t_post,
        int(self.t_stim_max / self.dt)
        + int(self.t_post / self.dt)
        + int(self.t_pre / self.dt),
    )

get_time_with_origin_at_center

get_time_with_origin_at_center(speed)

Get time array with origin where bar reaches central column.

Source code in flyvision/datasets/moving_bar.py
539
540
541
542
543
544
545
546
547
548
549
550
551
def get_time_with_origin_at_center(self, speed: float) -> np.ndarray:
    """Get time array with origin where bar reaches central column."""
    time_to_center = self.time_to_center(speed)
    n_steps = (
        int(self.t_stim_max / self.dt)
        + int(self.t_post / self.dt)
        + int(self.t_pre / self.dt)
    )
    return np.linspace(
        -(self.t_pre + time_to_center),
        n_steps * self.dt - (self.t_pre + time_to_center),
        n_steps,
    )

stimulus_cartoon

stimulus_cartoon(
    angle,
    width,
    intensity,
    speed,
    time_after_stimulus_onset=0.5,
    fig=None,
    ax=None,
    facecolor="#000000",
    cmap=plt.cm.bone,
    alpha=0.5,
    vmin=0,
    vmax=1,
    edgecolor="none",
    central_hex_color="#2f7cb9",
    **kwargs
)

Create a cartoon representation of the stimulus.

Source code in flyvision/datasets/moving_bar.py
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
def stimulus_cartoon(
    self,
    angle: float,
    width: float,
    intensity: float,
    speed: float,
    time_after_stimulus_onset: float = 0.5,
    fig: Optional[plt.Figure] = None,
    ax: Optional[plt.Axes] = None,
    facecolor: str = "#000000",
    cmap: Colormap = plt.cm.bone,
    alpha: float = 0.5,
    vmin: float = 0,
    vmax: float = 1,
    edgecolor: str = "none",
    central_hex_color: str = "#2f7cb9",
    **kwargs,
) -> tuple[plt.Figure, plt.Axes]:
    """Create a cartoon representation of the stimulus."""
    fig, ax = init_plot(fig=fig, ax=ax)

    time = (
        np.arange(
            0,
            self.t_pre + self.t_stim_max + self.t_post - self.dt,
            self.dt,
        )
        - self.t_pre
    )
    index = np.argmin(np.abs(time - time_after_stimulus_onset))

    fig, ax, _ = quick_hex_scatter(
        self.get(angle=angle, width=width, speed=speed, intensity=intensity)
        .cpu()
        .numpy()[index],
        vmin=vmin,
        vmax=vmax,
        cbar=False,
        figsize=[1, 1],
        max_extent=5,
        fig=fig,
        ax=ax,
        cmap=cmap,
        alpha=alpha,
        edgecolor=edgecolor,
        **kwargs,
    )
    rotation = np.array([
        [
            np.cos(np.radians(angle - 90)),
            -np.sin(np.radians(angle - 90)),
        ],
        [
            np.sin(np.radians(angle - 90)),
            np.cos(np.radians(angle - 90)),
        ],
    ])
    x = rotation @ np.array([0, -5])
    dx = rotation @ np.array([0, 1])
    ax.arrow(
        *x,
        *dx,
        facecolor=facecolor,
        width=0.75,
        head_length=2.5,
        edgecolor="k",
        linewidth=0.25,
    )
    _hex = RegularPolygon(
        (0, 0),
        numVertices=6,
        radius=1,
        linewidth=1,
        orientation=np.radians(30),
        edgecolor=central_hex_color,
        facecolor=central_hex_color,
        alpha=1,
        ls="-",
    )
    ax.add_patch(_hex)

    return fig, ax

flyvision.datasets.moving_bar.MovingEdge

Bases: MovingBar

Moving edge stimulus.

This class creates a moving edge stimulus by using a very wide bar.

Parameters:

Name Type Description Default
offsets tuple[int, int]

First and last offset to the central column in half ommatidia.

(-10, 11)
intensities list[float]

Intensity of the edge.

[0, 1]
speeds list[float]

Speed of the edge in half ommatidia per second.

[2.4, 4.8, 9.7, 13, 19, 25]
height int

Height of the edge in half ommatidia.

9
dt float

Time step in seconds.

1 / 200
device str

Device to store the stimulus.

device
post_pad_mode Literal['continue', 'value', 'reflect']

Padding mode after the stimulus.

'continue'
t_pre float

Time before the stimulus in seconds.

1.0
t_post float

Time after the stimulus in seconds.

1.0
build_stim_on_init bool

Build the stimulus on initialization.

True
shuffle_offsets bool

Shuffle the offsets to remove spatio-temporal correlation.

False
seed int

Seed for the random state.

0
angles list[int]

List of angles in degrees.

[0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330]
Note

This class uses a very wide bar (width=80) under the hood to render an edge stimulus.

Source code in flyvision/datasets/moving_bar.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
class MovingEdge(MovingBar):
    """Moving edge stimulus.

    This class creates a moving edge stimulus by using a very wide bar.

    Args:
        offsets: First and last offset to the central column in half ommatidia.
        intensities: Intensity of the edge.
        speeds: Speed of the edge in half ommatidia per second.
        height: Height of the edge in half ommatidia.
        dt: Time step in seconds.
        device: Device to store the stimulus.
        post_pad_mode: Padding mode after the stimulus.
        t_pre: Time before the stimulus in seconds.
        t_post: Time after the stimulus in seconds.
        build_stim_on_init: Build the stimulus on initialization.
        shuffle_offsets: Shuffle the offsets to remove spatio-temporal correlation.
        seed: Seed for the random state.
        angles: List of angles in degrees.

    Note:
        This class uses a very wide bar (width=80) under the hood to render an
        edge stimulus.
    """

    def __init__(
        self,
        offsets: tuple[int, int] = (-10, 11),
        intensities: list[float] = [0, 1],
        speeds: list[float] = [2.4, 4.8, 9.7, 13, 19, 25],
        height: int = 9,
        dt: float = 1 / 200,
        device: str = flyvision.device,
        post_pad_mode: Literal["continue", "value", "reflect"] = "continue",
        t_pre: float = 1.0,
        t_post: float = 1.0,
        build_stim_on_init: bool = True,
        shuffle_offsets: bool = False,
        seed: int = 0,
        angles: list[int] = [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330],
        **kwargs,
    ) -> None:
        super().__init__(
            widths=[80],
            offsets=offsets,
            intensities=intensities,
            speeds=speeds,
            height=height,
            dt=dt,
            device=device,
            bar_loc_horizontal=np.radians(0),
            post_pad_mode=post_pad_mode,
            t_pre=t_pre,
            t_post=t_post,
            build_stim_on_init=build_stim_on_init,
            shuffle_offsets=shuffle_offsets,
            seed=seed,
            angles=angles,
        )

Response Analysis

flyvision.analysis.moving_bar_responses

Analysis of responses to moving edges or bars.

Info

Relies on xarray dataset format defined in flyvision.analysis.stimulus_responses.

peak_responses

peak_responses(
    dataset, norm=None, from_degree=None, to_degree=None
)

Compute peak responses from rectified voltages, optionally normalized.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset containing ‘responses’ and necessary coordinates.

required
norm DataArray

Normalization array.

None
from_degree float

Starting degree for masking.

None
to_degree float

Ending degree for masking.

None

Returns:

Type Description
DataArray

Peak responses with reshaped and transposed dimensions.

Source code in flyvision/analysis/moving_bar_responses.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def peak_responses(
    dataset: xr.Dataset,
    norm: xr.DataArray = None,
    from_degree: float = None,
    to_degree: float = None,
) -> xr.DataArray:
    """
    Compute peak responses from rectified voltages, optionally normalized.

    Args:
        dataset: Input dataset containing 'responses' and necessary coordinates.
        norm: Normalization array.
        from_degree: Starting degree for masking.
        to_degree: Ending degree for masking.

    Returns:
        Peak responses with reshaped and transposed dimensions.
    """
    config = dataset.attrs['config']
    from_degree = from_degree if from_degree is not None else config['offsets'][0] * 2.25
    to_degree = to_degree if to_degree is not None else (config['offsets'][1] - 1) * 2.25

    # Generate time masks
    masks = get_time_masks(
        dataset, from_column=from_degree / 5.8, to_column=to_degree / 5.8
    )

    # Apply masks to responses and rectify
    responses = dataset['responses']
    masked = responses.where(masks, other=0)
    rectified = masked.clip(min=0)  # Rectify: max(0, response)

    # Normalize if provided
    if norm is not None:
        rectified = rectified / norm

    # Compute peak (maximum over 'frame')
    peak = rectified.max(dim='frame')
    return peak

get_time_masks

get_time_masks(dataset, from_column=-1.5, to_column=1.5)

Generate time masks for each sample based on speed and column range.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset containing ‘speed’ and ‘time’ coordinates.

required
from_column float

Start of the column range.

-1.5
to_column float

End of the column range.

1.5

Returns:

Type Description
DataArray

Boolean mask with dimensions (‘sample’, ‘frame’).

Source code in flyvision/analysis/moving_bar_responses.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def get_time_masks(
    dataset: xr.Dataset, from_column: float = -1.5, to_column: float = 1.5
) -> xr.DataArray:
    """
    Generate time masks for each sample based on speed and column range.

    Args:
        dataset: Input dataset containing 'speed' and 'time' coordinates.
        from_column: Start of the column range.
        to_column: End of the column range.

    Returns:
        Boolean mask with dimensions ('sample', 'frame').
    """
    speeds = dataset['speed'].values
    unique_speeds = np.unique(speeds)
    config = dataset.attrs['config']
    start, end = config['offsets']
    times = dataset['time'].values

    # Precompute masks for unique speeds
    mask_dict = {}
    for speed in unique_speeds:
        t_start, t_end = time_window(
            speed, from_column=from_column, to_column=to_column, start=start, end=end
        )
        mask_dict[speed] = mask_between_seconds(t_start, t_end, times)

    # Map masks to each sample based on its speed
    masks = np.array([mask_dict[speed] for speed in speeds])

    # Create a DataArray for the masks
    mask_da = xr.DataArray(
        data=masks,
        dims=('sample', 'frame'),
        coords={'sample': dataset['sample'], 'frame': dataset['frame']},
    )

    return mask_da

peak_responses_angular

peak_responses_angular(
    dataset, norm=None, from_degree=None, to_degree=None
)

Compute peak responses and make them complex over angles.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
norm DataArray

Normalization array.

None
from_degree float

Starting degree for masking.

None
to_degree float

Ending degree for masking.

None

Returns:

Type Description
DataArray

Complex-valued peak responses.

Source code in flyvision/analysis/moving_bar_responses.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def peak_responses_angular(
    dataset: xr.Dataset,
    norm: xr.DataArray = None,
    from_degree: float = None,
    to_degree: float = None,
) -> xr.DataArray:
    """
    Compute peak responses and make them complex over angles.

    Args:
        dataset: Input dataset.
        norm: Normalization array.
        from_degree: Starting degree for masking.
        to_degree: Ending degree for masking.

    Returns:
        Complex-valued peak responses.
    """
    peak = peak_responses(
        dataset, norm=norm, from_degree=from_degree, to_degree=to_degree
    )

    # Make complex over angles
    angles = peak['angle'].values
    radians = np.deg2rad(angles)
    # Expand dimensions to match broadcasting
    radians = radians[np.newaxis, :, np.newaxis]
    complex_peak = peak * np.exp(1j * radians)

    return complex_peak

direction_selectivity_index

direction_selectivity_index(
    dataset,
    average=True,
    norm=None,
    from_degree=None,
    to_degree=None,
)

Compute Direction Selectivity Index (DSI).

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
average bool

Whether to average over ‘width’ and ‘speed’.

True
norm DataArray

Normalization array.

None
from_degree float

Starting degree for masking.

None
to_degree float

Ending degree for masking.

None

Returns:

Type Description
DataArray

Direction Selectivity Index.

Source code in flyvision/analysis/moving_bar_responses.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def direction_selectivity_index(
    dataset: xr.Dataset,
    average: bool = True,
    norm: xr.DataArray = None,
    from_degree: float = None,
    to_degree: float = None,
) -> xr.DataArray:
    """
    Compute Direction Selectivity Index (DSI).

    Args:
        dataset: Input dataset.
        average: Whether to average over 'width' and 'speed'.
        norm: Normalization array.
        from_degree: Starting degree for masking.
        to_degree: Ending degree for masking.

    Returns:
        Direction Selectivity Index.
    """
    view = peak_responses_angular(
        dataset, norm=norm, from_degree=from_degree, to_degree=to_degree
    )
    view = view.set_index(sample=["angle", "width", "intensity", "speed"]).unstack(
        "sample"
    )

    # Compute vector sum over 'angle'
    vector_sum = view.sum(dim='angle')
    vector_length = np.abs(vector_sum)

    # Normalization: sum of absolute responses
    normalization = np.abs(view).sum(dim='angle').max(dim='intensity')
    dsi = vector_length / (normalization + 1e-15)

    if average:
        # Average over 'width' and 'speed'
        dsi = dsi.mean(dim=['width', 'speed'])

    return dsi.squeeze()

prepare_dsi_data

prepare_dsi_data(
    dsis,
    cell_types,
    sorted_type_list,
    known_on_off_first,
    sort_descending,
)

Prepare DSI data for plotting.

Parameters:

Name Type Description Default
dsis

Array of DSI values.

required
cell_types

Array of cell type labels.

required
sorted_type_list

List of cell types in desired order.

required
known_on_off_first

Whether to sort known ON/OFF types first.

required
sort_descending

Whether to sort DSIs in descending order.

required

Returns:

Type Description

Tuple of prepared DSIs and cell types.

Source code in flyvision/analysis/moving_bar_responses.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def prepare_dsi_data(
    dsis, cell_types, sorted_type_list, known_on_off_first, sort_descending
):
    """
    Prepare DSI data for plotting.

    Args:
        dsis: Array of DSI values.
        cell_types: Array of cell type labels.
        sorted_type_list: List of cell types in desired order.
        known_on_off_first: Whether to sort known ON/OFF types first.
        sort_descending: Whether to sort DSIs in descending order.

    Returns:
        Tuple of prepared DSIs and cell types.
    """
    if known_on_off_first:
        sorted_type_list = nodes_edges_utils.nodes_list_sorting_on_off_unknown(cell_types)

    if sorted_type_list is not None:
        dsis = nodes_edges_utils.sort_by_mapping_lists(
            cell_types, sorted_type_list, dsis, axis=0
        )
        cell_types = np.array(sorted_type_list)

    if sort_descending:
        medians = np.median(dsis, axis=(-2, -1))
        index = np.argsort(medians)[::-1]
        dsis = dsis[index]
        cell_types = cell_types[index]

    return dsis, cell_types

dsi_violins

dsi_violins(
    dsis,
    cell_types,
    scatter_best=False,
    scatter_all=True,
    cmap=None,
    colors=None,
    color="b",
    figsize=[10, 1],
    fontsize=6,
    showmeans=False,
    showmedians=True,
    sorted_type_list=None,
    sort_descending=False,
    known_on_off_first=True,
    scatter_kwargs={},
    **kwargs
)

Create violin plots for Direction Selectivity Index (DSI) data.

Parameters:

Name Type Description Default
dsis

Array of DSI values.

required
cell_types

Array of cell type labels.

required
scatter_best

Whether to scatter the best points.

False
scatter_all

Whether to scatter all points.

True
cmap

Colormap for the violins.

None
colors

Specific colors for the violins.

None
color

Default color if colors is None and cmap is None.

'b'
figsize

Figure size.

[10, 1]
fontsize

Font size for labels.

6
showmeans

Whether to show means on violins.

False
showmedians

Whether to show medians on violins.

True
sorted_type_list

List of cell types in desired order.

None
sort_descending

Whether to sort DSIs in descending order.

False
known_on_off_first

Whether to sort known ON/OFF types first.

True
**kwargs

Additional keyword arguments for violin_groups.

{}

Returns:

Type Description

Tuple of (figure, axis, colors, prepared DSIs)

Source code in flyvision/analysis/moving_bar_responses.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def dsi_violins(
    dsis,
    cell_types,
    scatter_best=False,
    scatter_all=True,
    cmap=None,
    colors=None,
    color="b",
    figsize=[10, 1],
    fontsize=6,
    showmeans=False,
    showmedians=True,
    sorted_type_list=None,
    sort_descending=False,
    known_on_off_first=True,
    scatter_kwargs={},
    **kwargs,
):
    """
    Create violin plots for Direction Selectivity Index (DSI) data.

    Args:
        dsis: Array of DSI values.
        cell_types: Array of cell type labels.
        scatter_best: Whether to scatter the best points.
        scatter_all: Whether to scatter all points.
        cmap: Colormap for the violins.
        colors: Specific colors for the violins.
        color: Default color if colors is None and cmap is None.
        figsize: Figure size.
        fontsize: Font size for labels.
        showmeans: Whether to show means on violins.
        showmedians: Whether to show medians on violins.
        sorted_type_list: List of cell types in desired order.
        sort_descending: Whether to sort DSIs in descending order.
        known_on_off_first: Whether to sort known ON/OFF types first.
        **kwargs: Additional keyword arguments for violin_groups.

    Returns:
        Tuple of (figure, axis, colors, prepared DSIs)
    """
    dsis, cell_types = prepare_dsi_data(
        dsis, cell_types, sorted_type_list, known_on_off_first, sort_descending
    )

    if len(dsis.shape) == 1:
        dsis = dsis[None, None, :]
    elif len(dsis.shape) == 2:
        dsis = dsis[:, None]

    if colors is None and cmap is None and color is not None:
        colors = (color,)

    fig, ax, colors = violin_groups(
        dsis,
        cell_types[:],
        rotation=90,
        scatter=False,
        cmap=cmap,
        colors=colors,
        fontsize=fontsize,
        figsize=figsize,
        width=0.7,
        showmeans=showmeans,
        showmedians=showmedians,
        **kwargs,
    )

    if dsis.shape[1] == 1:
        plt_utils.scatter_on_violins_with_best(
            dsis.T.squeeze(), ax, scatter_best, scatter_all, **scatter_kwargs
        )

    return fig, ax, colors, dsis

dsi_violins_on_and_off

dsi_violins_on_and_off(
    dsis,
    cell_types,
    scatter_best=False,
    scatter_all=True,
    bold_output_type_labels=False,
    output_cell_types=None,
    known_on_off_first=True,
    sorted_type_list=None,
    figsize=[10, 1],
    ylim=(0, 1),
    color_known_types=True,
    fontsize=6,
    fig=None,
    axes=None,
    **kwargs
)

Plot Direction Selectivity Index (DSI) for ON and OFF intensities.

Parameters:

Name Type Description Default
dsis DataArray

DataArray of DSI values.

required
cell_types DataArray

DataArray of cell type labels.

required
scatter_best

Whether to scatter the best points.

False
scatter_all

Whether to scatter all points.

True
bold_output_type_labels

Whether to bold output type labels.

False
output_cell_types

Cell types to output.

None
known_on_off_first

Whether to sort known ON/OFF types first.

True
sorted_type_list

List of cell types in desired order.

None
figsize

Figure size.

[10, 1]
ylim

Y-axis limits.

(0, 1)
color_known_types

Whether to color known cell types.

True
fontsize

Font size for labels.

6
fig

Existing figure to use.

None
axes

Existing axes to use.

None
**kwargs

Additional keyword arguments for dsi_violins.

{}

Returns:

Type Description

Tuple of (figure, (ax1, ax2))

Source code in flyvision/analysis/moving_bar_responses.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def dsi_violins_on_and_off(
    dsis: xr.DataArray,
    cell_types: xr.DataArray,
    scatter_best=False,
    scatter_all=True,
    bold_output_type_labels=False,
    output_cell_types=None,
    known_on_off_first=True,
    sorted_type_list=None,
    figsize=[10, 1],
    ylim=(0, 1),
    color_known_types=True,
    fontsize=6,
    fig=None,
    axes=None,
    **kwargs,
):
    """
    Plot Direction Selectivity Index (DSI) for ON and OFF intensities.

    Args:
        dsis: DataArray of DSI values.
        cell_types: DataArray of cell type labels.
        scatter_best: Whether to scatter the best points.
        scatter_all: Whether to scatter all points.
        bold_output_type_labels: Whether to bold output type labels.
        output_cell_types: Cell types to output.
        known_on_off_first: Whether to sort known ON/OFF types first.
        sorted_type_list: List of cell types in desired order.
        figsize: Figure size.
        ylim: Y-axis limits.
        color_known_types: Whether to color known cell types.
        fontsize: Font size for labels.
        fig: Existing figure to use.
        axes: Existing axes to use.
        **kwargs: Additional keyword arguments for dsi_violins.

    Returns:
        Tuple of (figure, (ax1, ax2))
    """
    if len(dsis.shape) == 2:
        dsis = dsis[None, :]

    if fig is None or axes is None:
        fig, axes = plt.subplots(2, 1, figsize=figsize, sharex=True)
        plt_utils.rm_spines(axes[0], spines=("bottom",))

    for i, intensity in enumerate([1, 0]):
        color = ON if intensity == 1 else OFF
        _, ax, *_ = dsi_violins(
            dsis=dsis.sel(intensity=intensity).values.T,
            cell_types=cell_types.values,
            color=color,
            fig=fig,
            ax=axes[i],
            fontsize=fontsize,
            sorted_type_list=sorted_type_list,
            scatter_best=scatter_best,
            scatter_all=scatter_all,
            known_on_off_first=known_on_off_first,
            **kwargs,
        )

        ax.grid(False)
        ax.set_ylim(*ylim)
        plt_utils.trim_axis(ax)
        plt_utils.set_spine_tick_params(
            ax, tickwidth=0.5, ticklength=3, ticklabelpad=2, spinewidth=0.5
        )

        if bold_output_type_labels:
            plt_utils.boldify_labels(output_cell_types, ax)

        if color_known_types:
            plt_utils.color_labels(["T4a", "T4b", "T4c", "T4d"], ON, ax)
            plt_utils.color_labels(["T5a", "T5b", "T5c", "T5d"], OFF, ax)

    # axes[0].set_xticks([])
    axes[0].set_yticks(np.arange(0, 1.2, 0.5))
    axes[1].set_yticks(np.arange(0, 1.2, 0.5))
    axes[1].invert_yaxis()

    return fig, axes

dsi_correlation_to_known

dsi_correlation_to_known(
    dsis, max_aggregate_dims=("intensity")
)

Compute the correlation between predicted DSIs and known DSIs.

Parameters:

Name Type Description Default
dsis DataArray

DataArray containing DSIs for ON and OFF intensities. Should have dimensions including ‘intensity’ and ‘neuron’, and a coordinate ‘cell_type’.

required
max_aggregate_dims

Dimensions to max-aggregate before computing correlation.

('intensity')

Returns:

Type Description
DataArray

Correlation between predicted and known DSIs.

Note

Known DSIs are binary (0 or 1) based on whether the cell type is known to be motion-tuned.

Source code in flyvision/analysis/moving_bar_responses.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def dsi_correlation_to_known(
    dsis: xr.DataArray, max_aggregate_dims=("intensity",)
) -> xr.DataArray:
    """
    Compute the correlation between predicted DSIs and known DSIs.

    Args:
        dsis: DataArray containing DSIs for ON and OFF intensities.
            Should have dimensions including 'intensity' and 'neuron',
            and a coordinate 'cell_type'.
        max_aggregate_dims: Dimensions to max-aggregate before computing correlation.

    Returns:
        Correlation between predicted and known DSIs.

    Note:
        Known DSIs are binary (0 or 1) based on whether the cell type
        is known to be motion-tuned.
    """
    # Ensure the 'intensity' dimension has length 2
    assert dsis.sizes['intensity'] == 2, "Dimension 'intensity' should have length 2"

    # Retrieve ground truth motion tuning information
    motion_tuning = groundtruth_utils.motion_tuning
    known_dsi_types = groundtruth_utils.known_dsi_types

    # Select dsis for known cell types
    dsis_for_known = dsis.where(dsis['cell_type'].isin(known_dsi_types), drop=True).max(
        dim=max_aggregate_dims
    )

    # Construct ground truth motion tuning array
    groundtruth_mt = xr.DataArray(
        [
            1.0 if ct in motion_tuning else 0.0
            for ct in dsis_for_known['cell_type'].values
        ],
        coords={'neuron': dsis_for_known['neuron']},
        dims=['neuron'],
    )

    # Compute correlation along 'neuron' dimension
    corr_dsi = xr.corr(dsis_for_known, groundtruth_mt, dim='neuron')

    return corr_dsi

correlation_to_known_tuning_curves

correlation_to_known_tuning_curves(dataset, absmax=False)

Compute correlation between predicted and known tuning curves.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
absmax bool

If True, maximize magnitude of correlation regardless of sign.

False

Returns:

Type Description
DataArray

Correlation values for each cell type.

Source code in flyvision/analysis/moving_bar_responses.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
def correlation_to_known_tuning_curves(
    dataset: xr.Dataset, absmax: bool = False
) -> xr.DataArray:
    """
    Compute correlation between predicted and known tuning curves.

    Args:
        dataset: Input dataset.
        absmax: If True, maximize magnitude of correlation regardless of sign.

    Returns:
        Correlation values for each cell type.
    """
    tuning = peak_responses(dataset)
    gt_tuning = get_known_tuning_curves(
        ["T4a", "T4b", "T4c", "T4d", "T5a", "T5b", "T5c", "T5d"], np.arange(0, 360, 30)
    )

    tuning = (
        tuning.set_index(sample=["angle", "intensity", "width", "speed"])
        .unstack("sample")
        .fillna(0.0)
        .custom.where(cell_type=["T4a", "T4b", "T4c", "T4d", "T5a", "T5b", "T5c", "T5d"])
    )

    # reset the neuron axis to make it compatible with the ground truth tuning curves
    tuning["neuron"] = np.arange(tuning.coords["neuron"].size)

    correlation = xr.corr(tuning, gt_tuning, dim="angle")
    correlation = correlation.fillna(0.0)
    if absmax:
        # take speed and width that maximize the magnitude of the correlation, regardless
        # of the sign
        argmax = np.abs(correlation).argmax(dim=("speed", "width"))
    else:
        # take speed and width that maximize the correlation as an experimentalist
        # would do
        argmax = correlation.argmax(dim=("speed", "width"))
    correlation = correlation.isel(argmax)
    return correlation

get_known_tuning_curves

get_known_tuning_curves(cell_types, angles)

Retrieve ground truth tuning curves for specified cell types.

Parameters:

Name Type Description Default
cell_types List[str]

List of cell type names.

required
angles ndarray

Array of angles to interpolate curves to.

required

Returns:

Type Description
DataArray

DataArray of interpolated ground truth tuning curves.

Source code in flyvision/analysis/moving_bar_responses.py
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def get_known_tuning_curves(cell_types: List[str], angles: np.ndarray) -> xr.DataArray:
    """
    Retrieve ground truth tuning curves for specified cell types.

    Args:
        cell_types: List of cell type names.
        angles: Array of angles to interpolate curves to.

    Returns:
        DataArray of interpolated ground truth tuning curves.
    """
    gt_angles = np.arange(0, 360, 30)
    tuning_curves = []

    for cell_type in cell_types:
        gt_tuning = groundtruth_utils.tuning_curves[cell_type]
        interp_func = interp1d(
            gt_angles, gt_tuning, kind='cubic', fill_value="extrapolate"
        )
        gt_tuning = interp_func(angles)
        tuning_curves.append(gt_tuning)

    dataset = xr.DataArray(
        np.array(tuning_curves),
        dims=['neuron', 'angle'],
        coords={'cell_type': ("neuron", cell_types), 'angle': angles},
    )

    return dataset

preferred_direction

preferred_direction(
    dataset,
    average=True,
    norm=None,
    from_degree=None,
    to_degree=None,
)

Compute the preferred direction based on peak responses.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
average bool

Whether to average over certain dimensions.

True
norm DataArray

Normalization array.

None
from_degree float

Starting degree for masking.

None
to_degree float

Ending degree for masking.

None

Returns:

Type Description
DataArray

Preferred direction angles in radians.

Source code in flyvision/analysis/moving_bar_responses.py
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def preferred_direction(
    dataset: xr.Dataset,
    average: bool = True,
    norm: xr.DataArray = None,
    from_degree: float = None,
    to_degree: float = None,
) -> xr.DataArray:
    """
    Compute the preferred direction based on peak responses.

    Args:
        dataset: Input dataset.
        average: Whether to average over certain dimensions.
        norm: Normalization array.
        from_degree: Starting degree for masking.
        to_degree: Ending degree for masking.

    Returns:
        Preferred direction angles in radians.
    """
    view = peak_responses_angular(
        dataset, norm=norm, from_degree=from_degree, to_degree=to_degree
    )
    view = view.set_index(sample=["angle", "width", "intensity", "speed"]).unstack(
        "sample"
    )

    # Compute vector sum over 'angle'
    vector_sum = view.sum(dim='angle')
    theta_pref = np.angle(vector_sum)

    if average:
        # Sum over 'width' and 'speed' before computing angle
        vector_sum = view.sum(dim=['width', 'speed', 'angle'])
        theta_pref = np.angle(vector_sum)

    vector_sum.data = theta_pref
    return vector_sum

angular_distance_to_known

angular_distance_to_known(pds)

Compute angular distance between predicted and known preferred directions for T4/T5.

Parameters:

Name Type Description Default
pds DataArray

Preferred directions for cells.

required

Returns:

Type Description
DataArray

Angular distances to known preferred directions.

Source code in flyvision/analysis/moving_bar_responses.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def angular_distance_to_known(pds: xr.DataArray) -> xr.DataArray:
    """
    Compute angular distance between predicted and known preferred directions for T4/T5.

    Args:
        pds: Preferred directions for cells.

    Returns:
        Angular distances to known preferred directions.
    """
    t4s = pds.custom.where(cell_type=["T4a", "T4b", "T4c", "T4d"], intensity=1)
    t4_distances = angular_distances(t4s, np.array([np.pi, 0, np.pi / 2, 3 * np.pi / 2]))
    t5s = pds.custom.where(cell_type=["T5a", "T5b", "T5c", "T5d"], intensity=0)
    t5_distances = angular_distances(t5s, np.array([np.pi, 0, np.pi / 2, 3 * np.pi / 2]))
    # concatenate both xarrays again in the neuron dimension, drop intensity
    return xr.concat(
        [t4_distances.drop('intensity'), t5_distances.drop('intensity')], dim='neuron'
    )

angular_distances

angular_distances(x, y, upper=np.pi)

Compute angular distances between two sets of angles.

Parameters:

Name Type Description Default
x DataArray

First set of angles.

required
y array

Second set of angles.

required
upper float

Upper bound for distance calculation.

pi

Returns:

Type Description
DataArray

Angular distances.

Source code in flyvision/analysis/moving_bar_responses.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
def angular_distances(x: xr.DataArray, y: np.array, upper: float = np.pi) -> xr.DataArray:
    """
    Compute angular distances between two sets of angles.

    Args:
        x: First set of angles.
        y: Second set of angles.
        upper: Upper bound for distance calculation.

    Returns:
        Angular distances.
    """
    assert x.neuron.size == len(y)
    y_da = xr.DataArray(y, dims=['neuron'], coords={'neuron': x.coords['neuron']})

    result = xr.apply_ufunc(
        simple_angle_distance,
        x,
        y_da,
        input_core_dims=[['neuron'], ['neuron']],
        output_core_dims=[['neuron']],
        vectorize=True,
        kwargs={'upper': upper},
    )

    return result

simple_angle_distance

simple_angle_distance(a, b, upper=np.pi)

Calculate element-wise angle distance between 0 and pi radians.

Parameters:

Name Type Description Default
a ndarray

First set of angles in radians.

required
b ndarray

Second set of angles in radians.

required
upper float

Upper bound for distance calculation.

pi

Returns:

Type Description
ndarray

Distance between 0 and pi radians.

Source code in flyvision/analysis/moving_bar_responses.py
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
def simple_angle_distance(
    a: np.ndarray, b: np.ndarray, upper: float = np.pi
) -> np.ndarray:
    """
    Calculate element-wise angle distance between 0 and pi radians.

    Args:
        a: First set of angles in radians.
        b: Second set of angles in radians.
        upper: Upper bound for distance calculation.

    Returns:
        Distance between 0 and pi radians.
    """
    a = np.atleast_1d(a)
    b = np.atleast_1d(b)

    # make all angles positive between 0 and 2 * pi
    a = a % (2 * np.pi)
    b = b % (2 * np.pi)

    y = np.zeros_like(a)
    # subtract the smaller angle from the larger one
    mask = a >= b
    y[mask] = a[mask] - b[mask]
    y[~mask] = b[~mask] - a[~mask]

    # map distances between pi and 2 pi to 0 and pi
    y[y > np.pi] = 2 * np.pi - y[y > np.pi]

    # map distances between 0 and pi to 0 and upper
    return y / np.pi * upper

plot_angular_tuning

plot_angular_tuning(
    dataset,
    cell_type,
    intensity,
    figsize=(1, 1),
    fontsize=5,
    linewidth=1,
    anglepad=-7,
    xlabelpad=-1,
    groundtruth=True,
    groundtruth_linewidth=1.0,
    fig=None,
    ax=None,
    peak_responses_da=None,
    weighted_average=None,
    average_models=False,
    colors=None,
    zorder=0,
    **kwargs
)

Plot angular tuning for a specific cell type and intensity.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
cell_type int

Neuron index to plot.

required
intensity int

Intensity level (0 or 1).

required
figsize Tuple[float, float]

Figure size.

(1, 1)
fontsize int

Font size.

5
linewidth float

Line width.

1
anglepad float

Angle padding.

-7
xlabelpad float

X-label padding.

-1
groundtruth bool

Whether to plot ground truth.

True
groundtruth_linewidth float

Line width for ground truth.

1.0
fig Figure

Existing figure.

None
ax Axes

Existing axes.

None
peak_responses_da DataArray

Precomputed peak responses.

None
weighted_average DataArray

Weights for averaging models.

None
average_models bool

Whether to average across models.

False
colors str

Color for the plot.

None
zorder Union[int, Iterable]

Z-order for plotting.

0
**kwargs

Additional keyword arguments for plotting.

{}

Returns:

Type Description
Tuple[Figure, Axes]

The figure and axes objects.

Source code in flyvision/analysis/moving_bar_responses.py
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
def plot_angular_tuning(
    dataset: xr.Dataset,
    cell_type: int,
    intensity: int,
    figsize: Tuple[float, float] = (1, 1),
    fontsize: int = 5,
    linewidth: float = 1,
    anglepad: float = -7,
    xlabelpad: float = -1,
    groundtruth: bool = True,
    groundtruth_linewidth: float = 1.0,
    fig: plt.Figure = None,
    ax: plt.Axes = None,
    peak_responses_da: xr.DataArray = None,
    weighted_average: xr.DataArray = None,
    average_models: bool = False,
    colors: str = None,
    zorder: Union[int, Iterable] = 0,
    **kwargs,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot angular tuning for a specific cell type and intensity.

    Args:
        dataset: Input dataset.
        cell_type: Neuron index to plot.
        intensity: Intensity level (0 or 1).
        figsize: Figure size.
        fontsize: Font size.
        linewidth: Line width.
        anglepad: Angle padding.
        xlabelpad: X-label padding.
        groundtruth: Whether to plot ground truth.
        groundtruth_linewidth: Line width for ground truth.
        fig: Existing figure.
        ax: Existing axes.
        peak_responses_da: Precomputed peak responses.
        weighted_average: Weights for averaging models.
        average_models: Whether to average across models.
        colors: Color for the plot.
        zorder: Z-order for plotting.
        **kwargs: Additional keyword arguments for plotting.

    Returns:
        The figure and axes objects.
    """
    if peak_responses_da is None:
        peak_responses_da = peak_responses(dataset)

    peak_responses_da = peak_responses_da.set_index(
        sample=["angle", "width", "intensity", "speed"]
    ).unstack("sample")

    # Select the specific cell type
    peak = peak_responses_da.custom.where(cell_type=cell_type, intensity=intensity)

    # Squeeze irrelevant dimensions
    # peak = peak.squeeze(dim=['width', 'intensity', 'speed'], drop=True)

    # Average over speeds
    average_tuning = peak.mean(dim=('speed', 'width'))

    # Average over models if specified
    if average_models and weighted_average is not None:
        average_tuning = average_tuning.weighted(weighted_average).mean(dim='network_id')
    elif average_models:
        average_tuning = average_tuning.mean(dim='network_id')

    color = (ON if intensity == 1 else OFF) if colors is None else colors

    average_tuning = average_tuning / average_tuning.max()

    angles = average_tuning['angle'].values
    fig, ax = polar(
        angles,
        average_tuning.data.squeeze().T,
        figsize=figsize,
        fontsize=fontsize,
        linewidth=linewidth,
        anglepad=anglepad,
        xlabelpad=xlabelpad,
        color=color,
        fig=fig,
        ax=ax,
        zorder=zorder,
        **kwargs,
    )

    if groundtruth and cell_type in groundtruth_utils.tuning_curves:
        r_gt = np.array(groundtruth_utils.tuning_curves[cell_type])
        r_gt = r_gt / np.max(np.abs(r_gt))
        theta_gt = np.arange(0, 360, 360 / len(r_gt))
        polar(
            theta_gt,
            r_gt,
            figsize=figsize,
            fontsize=fontsize,
            linewidth=groundtruth_linewidth,
            anglepad=anglepad,
            xlabelpad=xlabelpad,
            color="k",
            fig=fig,
            ax=ax,
            # **kwargs,
        )

    return fig, ax

plot_T4_tuning

plot_T4_tuning(dataset)

Plot tuning curves for T4 cells.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
Source code in flyvision/analysis/moving_bar_responses.py
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
def plot_T4_tuning(dataset: xr.Dataset) -> None:
    """
    Plot tuning curves for T4 cells.

    Args:
        dataset: Input dataset.
    """
    fig, axes, _ = plt_utils.get_axis_grid(
        range(4),
        projection="polar",
        aspect_ratio=4,
        figsize=[2.95, 0.83],
        wspace=0.25,
    )
    for i, cell_type in enumerate(["T4a", "T4b", "T4c", "T4d"]):
        plot_angular_tuning(
            dataset,
            cell_type,
            intensity=1,
            fig=fig,
            ax=axes[i],
            groundtruth=True,
            aggregate_models="mean",
            linewidth=1.0,
        )
        axes[i].set_xlabel(cell_type)

    for ax in axes:
        ax.xaxis.label.set_fontsize(5)
        [i.set_linewidth(0.5) for i in ax.spines.values()]
        ax.grid(True, linewidth=0.5)

plot_T5_tuning

plot_T5_tuning(dataset)

Plot tuning curves for T5 cells.

Parameters:

Name Type Description Default
dataset Dataset

Input dataset.

required
Source code in flyvision/analysis/moving_bar_responses.py
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
def plot_T5_tuning(dataset: xr.Dataset) -> None:
    """
    Plot tuning curves for T5 cells.

    Args:
        dataset: Input dataset.
    """
    fig, axes, _ = plt_utils.get_axis_grid(
        range(4),
        projection="polar",
        aspect_ratio=4,
        figsize=[2.95, 0.83],
        wspace=0.25,
    )
    for i, cell_type in enumerate(["T5a", "T5b", "T5c", "T5d"]):
        plot_angular_tuning(
            dataset,
            cell_type,
            intensity=0,
            fig=fig,
            ax=axes[i],
            groundtruth=True,
            aggregate_models="mean",
            linewidth=1.0,
        )
        axes[i].set_xlabel(cell_type)

    for ax in axes:
        ax.xaxis.label.set_fontsize(5)
        [i.set_linewidth(0.5) for i in ax.spines.values()]
        ax.grid(True, linewidth=0.5)

mask_between_seconds

mask_between_seconds(
    t_start,
    t_end,
    time=None,
    t_pre=None,
    t_stim=None,
    t_post=None,
    dt=None,
)

Create a boolean mask for time values between t_start and t_end.

Parameters:

Name Type Description Default
t_start float

Start time for the mask.

required
t_end float

End time for the mask.

required
time ndarray

Array of time values. If None, it will be generated using other parameters.

None
t_pre float

Time before stimulus onset.

None
t_stim float

Stimulus duration.

None
t_post float

Time after stimulus offset.

None
dt float

Time step.

None

Returns:

Type Description
ndarray

Boolean mask array.

Note

If ‘time’ is not provided, it will be generated using t_pre, t_stim, t_post, and dt.

Source code in flyvision/analysis/moving_bar_responses.py
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
def mask_between_seconds(
    t_start: float,
    t_end: float,
    time: np.ndarray = None,
    t_pre: float = None,
    t_stim: float = None,
    t_post: float = None,
    dt: float = None,
) -> np.ndarray:
    """
    Create a boolean mask for time values between t_start and t_end.

    Args:
        t_start: Start time for the mask.
        t_end: End time for the mask.
        time: Array of time values. If None, it will be generated using other parameters.
        t_pre: Time before stimulus onset.
        t_stim: Stimulus duration.
        t_post: Time after stimulus offset.
        dt: Time step.

    Returns:
        Boolean mask array.

    Note:
        If 'time' is not provided, it will be generated using t_pre, t_stim, t_post,
        and dt.
    """
    time = time if time is not None else np.arange(-t_pre, t_stim + t_post - dt, dt)
    return (time >= t_start) & (time <= t_end)

time_window

time_window(
    speed,
    from_column=-1.5,
    to_column=1.5,
    start=-10,
    end=11,
)

Calculate start and end time when the bar passes from_column to to_column.

Parameters:

Name Type Description Default
speed float

Speed in columns/s (5.8deg/s).

required
from_column float

Starting column in 5.8deg units.

-1.5
to_column float

Ending column in 5.8deg units.

1.5
start float

Starting position in LED units (2.25deg).

-10
end float

Ending position in LED units (2.25deg).

11

Returns:

Type Description
tuple[float, float]

Tuple containing start and end times.

Note

The function adjusts the to_column by adding a single LED width (2.25 deg) to make it symmetric around the central column.

Source code in flyvision/analysis/moving_bar_responses.py
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
def time_window(
    speed: float,
    from_column: float = -1.5,
    to_column: float = 1.5,
    start: float = -10,
    end: float = 11,
) -> tuple[float, float]:
    """
    Calculate start and end time when the bar passes from_column to to_column.

    Args:
        speed: Speed in columns/s (5.8deg/s).
        from_column: Starting column in 5.8deg units.
        to_column: Ending column in 5.8deg units.
        start: Starting position in LED units (2.25deg).
        end: Ending position in LED units (2.25deg).

    Returns:
        Tuple containing start and end times.

    Note:
        The function adjusts the to_column by adding a single LED width (2.25 deg)
        to make it symmetric around the central column.
    """
    start_in_columns = start * 2.25 / 5.8  # in 5.8deg
    end_in_columns = end * 2.25 / 5.8  # in 5.8deg

    # Make it symmetric around the central column by adding a single LED width
    to_column += 2.25 / 5.8

    assert abs(start_in_columns) >= abs(from_column)
    assert abs(end_in_columns) >= abs(to_column)

    # Calculate when the edge is at the from_column
    t_start = (abs(start_in_columns) - abs(from_column)) / speed
    # Calculate when it's at the to_column
    t_end = t_start + (to_column - from_column) / speed
    return t_start, t_end

Current Analysis

flyvision.analysis.moving_edge_currents.MovingEdgeCurrentView

Represents a view of moving edge currents for analysis and visualization.

This class provides methods for analyzing and visualizing currents and responses related to moving edge stimuli in neural simulations.

Parameters:

Name Type Description Default
ensemble

The ensemble of models.

required
target_type str

The type of target cell.

required
exp_data List[ExperimentData]

Experimental data.

required
arg_df DataFrame | None

DataFrame containing stimulus arguments.

None
currents Namespace | None

Currents for each source type.

None
rfs ReceptiveFields | None

Receptive fields for the target cells.

None
time ndarray | None

Time array for the simulation.

None
responses ndarray | None

Responses of the target cells.

None

Attributes:

Name Type Description
target_type

The type of target cell.

ensemble

The ensemble of models.

config

Configuration settings.

arg_df

DataFrame containing stimulus arguments.

rfs

Receptive fields for the target cells.

exp_data

Experimental data.

source_types

Types of source cells.

time

Time array for the simulation.

currents

Currents for each source type.

responses

Responses of the target cells.

Note

This class is intended to be updated to use xarray datasets in the future.

Source code in flyvision/analysis/moving_edge_currents.py
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
class MovingEdgeCurrentView:
    """Represents a view of moving edge currents for analysis and visualization.

    This class provides methods for analyzing and visualizing currents and responses
    related to moving edge stimuli in neural simulations.

    Args:
        ensemble: The ensemble of models.
        target_type: The type of target cell.
        exp_data: Experimental data.
        arg_df: DataFrame containing stimulus arguments.
        currents: Currents for each source type.
        rfs: Receptive fields for the target cells.
        time: Time array for the simulation.
        responses: Responses of the target cells.

    Attributes:
        target_type: The type of target cell.
        ensemble: The ensemble of models.
        config: Configuration settings.
        arg_df: DataFrame containing stimulus arguments.
        rfs: Receptive fields for the target cells.
        exp_data: Experimental data.
        source_types: Types of source cells.
        time: Time array for the simulation.
        currents: Currents for each source type.
        responses: Responses of the target cells.

    Note:
        This class is intended to be updated to use xarray datasets in the future.
    """

    def __init__(
        self,
        ensemble,
        target_type: str,
        exp_data: List[ExperimentData],
        arg_df: pd.DataFrame | None = None,
        currents: Namespace | None = None,
        rfs: ReceptiveFields | None = None,
        time: np.ndarray | None = None,
        responses: np.ndarray | None = None,
    ):
        self.target_type = target_type
        self.ensemble = ensemble
        self.config = exp_data[0].config
        if arg_df is None:
            self.arg_df = MovingEdge(**exp_data[0].config).arg_df
        else:
            self.arg_df = arg_df
        self.rfs = rfs or reset_index(
            ReceptiveFields(target_type, ensemble[0].connectome.edges.to_df())
        )
        self.exp_data = exp_data
        self.source_types = self.rfs.source_types
        self.time = time
        self.init_currents(currents)
        self.init_time(time)
        self.init_responses(responses)

    def init_currents(self, currents: Namespace | None) -> None:
        """Initialize the currents for each source type.

        Args:
            currents: Currents for each source type.
        """
        if currents is not None:
            self.currents = currents
            return
        self.currents = Namespace()
        for source_type in self.rfs.source_types:
            # (on/off, n_models, n_angles, n_timesteps, n_input_cells)
            self.currents[source_type] = np.array(
                [
                    np.array(exp.target_data[self.target_type].source_data[source_type])
                    for exp in self.exp_data
                ],
            )

    def init_responses(self, responses: np.ndarray | None) -> None:
        """Initialize the responses of the target cells.

        Args:
            responses: Responses of the target cells.
        """
        if responses is not None:
            self.responses = responses
            return
        # (on/off, n_models, n_angles, n_timesteps)
        self.responses = np.array(
            [
                np.array(exp.target_data[self.target_type].activity_central)
                for exp in self.exp_data
            ],
        )

    def init_time(self, time: np.ndarray | None) -> None:
        """Initialize the time array for the simulation.

        Args:
            time: Time array for the simulation.
        """
        if time is not None:
            self.time = time
            return
        self.time = self.time or (
            np.arange(0, next(iter(self.currents.values())).shape[-2]) * self.config.dt
            - self.config.t_pre
        )

    @property
    def on(self) -> "MovingEdgeCurrentView":
        """Return a view of the ON responses."""
        on_index = get_stimulus_index(self.arg_df, intensity=0)
        arg_df = self.arg_df.iloc[on_index]
        return self.view(
            Namespace({
                cell_type: np.take(c, indices=on_index, axis=1)
                for cell_type, c in self.currents.items()
            }),
            responses=np.take(self.responses, indices=on_index, axis=1),
            arg_df=arg_df,
        )

    @property
    def off(self) -> "MovingEdgeCurrentView":
        """Return a view of the OFF responses."""
        off_index = get_stimulus_index(self.arg_df, intensity=0)
        arg_df = self.arg_df.iloc[off_index]
        return self.view(
            Namespace({
                cell_type: np.take(c, indices=off_index, axis=1)
                for cell_type, c in self.currents.items()
            }),
            responses=np.take(self.responses, indices=off_index, axis=1),
            arg_df=arg_df,
        )

    def divide_by_given_norm(self, norm: CellTypeArray) -> "MovingEdgeCurrentView":
        """Divide currents and responses by a given norm.

        Args:
            norm: The norm to divide by.

        Returns:
            A new view with normalized currents and responses.

        Raises:
            ValueError: If norm is not a CellTypeArray.
        """
        if not isinstance(norm, CellTypeArray):
            raise ValueError

        response_dims = np.arange(len(self.responses.shape))
        response_norm = np.expand_dims(
            norm[self.target_type].squeeze(), list(set(response_dims) - set([0]))
        )

        # divide the responses by the norm
        new_responses = self.responses[:] / response_norm

        # note: we also divide by the norm of the target cell type

        currents_dims = np.arange(len(next(iter(self.currents.values())).shape))

        currents_norm = np.expand_dims(
            norm[self.target_type].squeeze(), list(set(currents_dims) - set([0]))
        )

        # divide the currents by the norm
        new_currents = Namespace({
            cell_type: c / currents_norm for cell_type, c in self.currents.items()
        })
        return self.view(currents=new_currents, responses=new_responses)

    def at_contrast(self, contrast: float) -> "MovingEdgeCurrentView":
        """Create a new view filtered by contrast.

        Args:
            contrast: The contrast value to filter by.

        Returns:
            A new view with data filtered by the specified contrast.
        """
        contrast_index = get_stimulus_index(self.arg_df, intensity=contrast)
        arg_df = self.arg_df.iloc[contrast_index]
        return self.view(
            Namespace({
                cell_type: np.take(c, indices=contrast_index, axis=1)
                for cell_type, c in self.currents.items()
            }),
            responses=np.take(self.responses, indices=contrast_index, axis=1),
            arg_df=arg_df,
        )

    def at_angle(self, angle: float) -> "MovingEdgeCurrentView":
        """Create a new view filtered by angle.

        Args:
            angle: The angle value to filter by.

        Returns:
            A new view with data filtered by the specified angle.
        """
        angle_index = get_stimulus_index(self.arg_df, angle=angle)
        arg_df = self.arg_df.iloc[angle_index]
        return self.view(
            Namespace({
                cell_type: np.take(c, indices=angle_index, axis=1)
                for cell_type, c in self.currents.items()
            }),
            responses=np.take(self.responses, indices=angle_index, axis=1),
            arg_df=arg_df,
        )

    def at_position(
        self, u: float | None = None, v: float | None = None, central: bool = True
    ) -> "MovingEdgeCurrentView":
        """Create a new view filtered by position.

        Args:
            u: The u-coordinate.
            v: The v-coordinate.
            central: Whether to use central position.

        Returns:
            A new view with data filtered by the specified position.
        """
        rfs = at_position(self.rfs, u, v, central)
        currents = Namespace({
            cell_type: c[:, :, :, :, rfs[cell_type].index]
            for cell_type, c in self.currents.items()
        })
        return self.view(currents, rfs=rfs)

    def between_seconds(self, t_start: float, t_end: float) -> "MovingEdgeCurrentView":
        """Create a new view filtered by time range.

        Args:
            t_start: Start time in seconds.
            t_end: End time in seconds.

        Returns:
            A new view with data filtered by the specified time range.
        """
        slice = np.where((self.time >= t_start) & (self.time < t_end))[0]
        newview = self[:, :, slice, :]
        newview.time = self.time[slice]
        newview.responses = self.responses[:, :, slice]
        return newview

    def model_selection(self, mask: np.ndarray) -> "MovingEdgeCurrentView":
        """Create a new view with selected models.

        Args:
            mask: Boolean mask for model selection.

        Returns:
            A new view with selected models.
        """
        return self[mask, :, :, :]

    def __getattr__(self, key):
        return self.__getitem__(key)

    def __getitem__(self, key) -> Union["MovingEdgeCurrentView", Any]:
        # e.g. view.C3
        if isinstance(key, str) and key in self.source_types:
            return self.view(Namespace({key: self.currents[key]}))
        # e.g. view["C3", 0, 0, 0]
        elif (
            isinstance(key, Iterable)
            and isinstance(key[0], str)
            and key[0] in self.source_types
            and len(key[1:]) == self.shape
        ):
            return self.view(self.currents[key[0]][key[1:]])
        # e.g. view[index, :, :, :]
        elif isinstance(key, Iterable) and len(key) == len(self.shape):
            return self.view(
                Namespace({cell_type: c[key] for cell_type, c in self.currents.items()}),
                responses=self.responses[key[:-1]],
            )
        # view[:]
        elif key == slice(None):
            if len(self.currents) == 1:
                return next(iter(self.currents.values()))
            return self.currents
        return object.__getattribute__(self, key)

    def __repr__(self):
        cv = {ct: v.shape for ct, v in self.currents.items()}
        formatted_cv = ",\n        ".join(
            f"'{ct}': Array(shape={v})" for ct, v in cv.items()
        )
        return (
            f"{self.__class__.__name__}(\n"
            f"    ensemble={self.ensemble.name},\n"
            f"    target_type={self.target_type},\n"
            f"    currents={{\n        {formatted_cv}\n    }},\n"
            f"    rfs={self.rfs}\n"
            f")"
        )

    @property
    def shape(self):
        return next(iter(self.currents.values())).shape

    def sorting(self, average_over_models: bool = True, mode: str = "all") -> np.ndarray:
        """Sort cell types based on their contributions.

        Args:
            average_over_models: Whether to average over models.
            mode: Sorting mode ("all", "excitatory", or "inhibitory").

        Returns:
            Sorted array of cell types.

        Raises:
            ValueError: If an invalid mode is provided.
        """
        summed = self if len(self.shape) == 4 else self.sum_over_cells()
        signs = self.signs()
        if average_over_models:
            absmax = {
                k: v * signs[k]
                for k, v in valmap(
                    lambda v: np.nanmax(
                        np.abs(np.nanmean(v, axis=1, keepdims=True)),
                        axis=(0, 2, 3),
                    ),
                    summed[:],
                ).items()
            }
        else:
            # summing over on/off, angles and time to sort -- results in n_models sortings
            absmax = {
                k: v * signs[k]
                for k, v in valmap(
                    lambda v: np.nanmax(np.abs(v), axis=(0, 2, 3)), summed[:]
                ).items()
            }
        cell_types = np.array(list(absmax.keys()))
        values = np.array(list(absmax.values()))
        sorting = np.argsort(values, axis=0).T
        #         if average_over_models:
        #             # add extra dimension here for the next operation
        #             sorting = sorting[None]
        self.sorted_cell_types = cell_types[sorting[:, ::-1]]

        # return all excitatory and inhibitory from most excitatory to most inhibitory
        if mode == "all":
            return self.sorted_cell_types
        # from most excitatory to least excitatory
        elif mode == "excitatory":
            assert average_over_models
            return np.array([
                cell_type
                for cell_type in self.sorted_cell_types[0]
                if signs[cell_type] == 1
            ])
        # from most inhibitory to least inhibitory
        elif mode == "inhibitory":
            assert average_over_models
            return np.array([
                cell_type
                for cell_type in self.sorted_cell_types[0][::-1]
                if signs[cell_type] == -1
            ])
        else:
            raise ValueError(f"mode {mode}")

    def filter_cell_types_by_contribution(
        self,
        bins: int = 3,
        cut_off_edge: int = 1,
        mode: str = "above_cut_off",
        statistic: Callable = np.max,
    ) -> np.ndarray:
        """Filter cell types based on their contribution.

        Args:
            bins: Number of bins for contribution levels.
            cut_off_edge: Edge index for cut-off.
            mode: Filtering mode ("above_cut_off" or "below_cut_off").
            statistic: Function to compute the statistic.

        Returns:
            Filtered array of cell types.

        Raises:
            ValueError: If an invalid mode is provided.

        Info:
            In principle, chunks the y-axis of the current plots into excitatory and
            inhibitory parts and each of the parts into bins. All cell types with currents
            above or below, depending on the mode, the specified bin edge are discarded.
        """
        sorting = self.sorting()[0]
        signs = self.signs()
        currents = self.sum_over_cells().currents

        filtered_cell_types = []
        for sign in [1, -1]:
            # compute the std over all inputs
            values = {
                cell_type: statistic(np.abs(currents[cell_type][:]))
                for cell_type in sorting
                if signs[cell_type] == sign
            }
            # bin into three bins
            # ala (low contribution, medium contribution, high contribution)
            counts, bins = np.histogram(list(values.values()), bins=bins)
            cut_off_value = bins[cut_off_edge]
            if mode == "above_cut_off":
                filtered_cell_types.extend(
                    list(valfilter(lambda v, cut_off=cut_off_value: v >= cut_off, values))
                )
            elif mode == "below_cut_off":
                filtered_cell_types.extend(
                    list(valfilter(lambda v, cut_off=cut_off_value: v < cut_off, values))
                )
            else:
                raise ValueError(f"mode {mode}")
        return np.array(filtered_cell_types)

    def filter_source_types(
        self,
        hide_source_types: str | list | None,
        bins: int,
        edge: int,
        mode: str,
        statistic: Callable = np.max,
    ) -> np.ndarray:
        """Filter source types based on various criteria.

        Args:
            hide_source_types: Source types to hide or "auto".
            bins: Number of bins for contribution levels.
            edge: Edge index for cut-off.
            mode: Filtering mode.
            statistic: Function to compute the statistic.

        Returns:
            Filtered array of source types.
        """
        source_types = self.sorting()[0]
        if isinstance(hide_source_types, str) and hide_source_types == "auto":
            hide_source_types = self.filter_cell_types_by_contribution(
                bins=bins, cut_off_edge=edge, mode=mode, statistic=statistic
            )

        if hide_source_types is not None:
            source_types = np.array([
                source_type
                for source_type in source_types
                if source_type not in hide_source_types
            ])
        return source_types

    def signs(self) -> dict[str, float]:
        """Compute the signs of receptive fields for each source type.

        Returns:
            Dictionary of signs for each source type.
        """
        return {ct: np.mean(self.rfs[ct].sign) for ct in self.rfs.source_types}

    def sum_over_cells(self) -> "MovingEdgeCurrentView":
        """Sum currents over cells.

        Returns:
            A new view with currents summed over cells.
        """
        return self.view(
            Namespace({
                cell_type: c.sum(axis=-1) for cell_type, c in self.currents.items()
            }),
        )

    def plot_spatial_contribution(
        self,
        source_type: str,
        t_start: float,
        t_end: float,
        mode: str = "peak",
        title: str = "{source_type} :→",
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
        max_extent: float | None = None,
        **kwargs,
    ) -> plt.Axes:
        """Plot the spatial contribution of a source type.

        Args:
            source_type: The source type to plot.
            t_start: Start time for the plot.
            t_end: End time for the plot.
            mode: Mode for calculating values ("peak", "mean", or "std").
            title: Title format string for the plot.
            fig: Existing figure to use.
            ax: Existing axes to use.
            max_extent: Maximum extent of the spatial filter.
            **kwargs: Additional keyword arguments for plt_utils.kernel.

        Returns:
            Axes object containing the plot.
        """
        current_view = kwargs.get("current_view") or (
            self.between_seconds(t_start, t_end)  # .at_contrast(contrast).at_angle(angle)
        )

        vmin = kwargs.get("vmin") or (
            np.floor(
                min(
                    0,
                    min(
                        current.mean(axis=(0, 1, 2)).min()
                        for current in list(current_view[:].values())
                    ),
                )
                * 100
            )
            / 100
        )

        vmax = kwargs.get("vmax") or (
            np.ceil(
                max(
                    0,
                    max(
                        current.mean(axis=(0, 1, 2)).max()
                        for current in list(current_view[:].values())
                    ),
                )
                * 100
            )
            / 100
        )

        u, v = current_view.rfs[source_type][["source_u", "source_v"]].values.T
        # average over models
        # (1, n_models, 1, n_timesteps, n_models) -> (n_timesteps, n_models)
        # import pdb

        # pdb.set_trace()
        values = current_view[source_type][:].mean(axis=(0, 1))
        if mode == "peak":
            values = values[
                np.argmax(np.abs(values), axis=0), np.arange(values.shape[-1])
            ]
        elif mode == "mean":
            values = np.mean(values, axis=0)
        elif mode == "std":
            signs = self.signs()
            values = signs[source_type] * np.std(values, axis=0)
        fig, ax, _ = plots.kernel(
            u,
            v,
            values,
            fill=True,
            max_extent=max_extent or current_view.rfs.max_extent,
            label=title.format(source_type=source_type),
            labelxy="auto",
            strict_sign=False,
            fig=fig,
            ax=ax,
            **kwargs,
        )
        (xmin, ymin, xmax, ymax) = ax.dataLim.extents
        ax.set_xlim(plt_utils.get_lims((xmin, xmax), 0.01))
        ax.set_ylim(plt_utils.get_lims((ymin, ymax), 0.01))

    def plot_spatial_contribution_grid(
        self,
        t_start: float,
        t_end: float,
        max_extent: float = 3,
        mode: str = "peak",
        title: str = "{source_type} :→",
        fig: plt.Figure | None = None,
        axes: np.ndarray[plt.Axes] | None = None,
        fontsize: float = 5,
        edgewidth: float = 0.125,
        title_y: float = 0.8,
        max_figure_height_cm: float = 9.271,
        panel_height_cm: float | str = "auto",
        max_figure_width_cm: float = 2.54,
        panel_width_cm: float = 2.54,
        annotate: bool = False,
        cbar: bool = False,
        hide_source_types: str | list | None = "auto",
        hide_source_types_bins: int = 5,
        hide_source_types_cut_off_edge: int = 1,
        hide_source_types_mode: str = "below_cut_off",
        max_axes: int | None = None,
        **kwargs,
    ) -> tuple[
        plt.Figure,
        np.ndarray[plt.Axes],
        tuple[plt.Colorbar, plt.Colormap, plt.Normalize, float, float],
    ]:
        """Plot a grid of spatial contributions for different source types.

        Args:
            t_start: Start time for the plot.
            t_end: End time for the plot.
            max_extent: Maximum extent of the spatial filter.
            mode: Mode for calculating values ("peak", "mean", or "std").
            title: Title format string for each subplot.
            fig: Existing figure to use.
            axes: Existing axes to use.
            fontsize: Font size for labels and titles.
            edgewidth: Width of edges in the plot.
            title_y: Y-position of the title.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            annotate: Whether to annotate the plots.
            cbar: Whether to add a colorbar.
            hide_source_types: Source types to hide or "auto".
            hide_source_types_bins: Number of bins for auto-hiding.
            hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
            hide_source_types_mode: Mode for auto-hiding source types.
            max_axes: Maximum number of axes to create.
            **kwargs: Additional keyword arguments for plot_spatial_contribution.

        Returns:
            Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).
        """
        current_view = self.between_seconds(t_start, t_end)

        vmin = (
            np.floor(
                min(
                    0,
                    min(
                        current.mean(axis=(0, 1, 2)).min()
                        for current in list(current_view[:].values())
                    ),
                )
                * 10
            )
            / 10
        )

        vmax = (
            np.ceil(
                max(
                    0,
                    max(
                        current.mean(axis=(0, 1, 2)).max()
                        for current in list(current_view[:].values())
                    ),
                )
                * 10
            )
            / 10
        )

        source_types = self.filter_source_types(
            hide_source_types,
            bins=hide_source_types_bins,
            edge=hide_source_types_cut_off_edge,
            mode=hide_source_types_mode,
        )

        if fig is None and axes is None:
            figsize = figsize_from_n_items(
                max_axes or len(source_types),
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=(
                    max_figure_height_cm / (max_axes or len(source_types))
                    if panel_height_cm == "auto"
                    else panel_height_cm
                ),
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(
                unmask_n=max_axes or len(source_types), hspace=0.1, wspace=0
            )
            if max_axes is not None and len(source_types) < max_axes:
                for ax in np.array(axes).flatten():
                    if isinstance(ax, Axes):
                        ax.axis("off")

        for i, source_type in enumerate(source_types):
            self.plot_spatial_contribution(
                source_type,
                #                 contrast,
                #                 angle,
                t_start,
                t_end,
                mode=mode,
                title=title,
                fontsize=fontsize,
                edgewidth=edgewidth,
                title_y=title_y,
                fig=fig,
                ax=axes[i],
                current_view=current_view,
                vmin=vmin,
                vmax=vmax,
                annotate=annotate,
                cbar=False,
                max_extent=max_extent or current_view.rfs.max_extent,
                **kwargs,
            )

        cmap = plt.cm.seismic
        norm = plt_utils.get_norm(vmin=vmin, vmax=vmax, midpoint=0)
        if cbar:
            cbar = plt_utils.add_colorbar_to_fig(
                fig,
                width=0.01,
                height=0.25,
                fontsize=fontsize,
                cmap=cmap,
                norm=norm,
                label=f"{mode} input currents",
                n_ticks=4,
                n_decimals=1,
            )
        return fig, axes, (cbar, cmap, norm, vmin, vmax)

    def plot_spatial_filter(
        self,
        source_type: str,
        title: str = "{source_type} :→",
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
        max_extent: float | None = None,
        **kwargs,
    ) -> plt.Axes:
        """Plot the spatial filter for a given source type.

        Args:
            source_type: The source type to plot.
            title: Title format string for the plot.
            fig: Existing figure to use.
            ax: Existing axes to use.
            max_extent: Maximum extent of the spatial filter.
            **kwargs: Additional keyword arguments for plt_utils.kernel.

        Returns:
            Axes object containing the plot.
        """
        filter = self.rfs

        def filter_values(rf):
            return (rf.n_syn * rf.sign).values

        vmin = kwargs.pop("vmin", None) or (
            np.floor(
                min(
                    0,
                    min(
                        min(filter_values(filter[source_type]))
                        for source_type in self.source_types
                    ),
                )
                * 100
            )
            / 100
        )

        vmax = kwargs.pop("vmax", None) or (
            np.ceil(
                max(
                    0,
                    max(
                        max(filter_values(filter[source_type]))
                        for source_type in self.source_types
                    ),
                )
                * 100
            )
            / 100
        )

        u, v = filter[source_type][["source_u", "source_v"]].values.T
        # average over models
        # (1, n_models, 1, n_timesteps, n_models) -> (n_timesteps, n_models)
        values = filter_values(filter[source_type])

        label = title.format(source_type=source_type)
        fig, ax, _ = plt_utils.kernel(
            u,
            v,
            values,
            fill=True,
            max_extent=max_extent or filter.max_extent,
            label=label,
            labelxy="auto",
            strict_sign=False,
            fig=fig,
            ax=ax,
            vmin=vmin,
            vmax=vmax,
            **kwargs,
        )
        (xmin, ymin, xmax, ymax) = ax.dataLim.extents
        ax.set_xlim(plt_utils.get_lims((xmin, xmax), 0.01))
        ax.set_ylim(plt_utils.get_lims((ymin, ymax), 0.01))
        return ax

    def plot_spatial_filter_grid(
        self,
        title: str = "{source_type} :→",
        fig: plt.Figure | None = None,
        axes: np.ndarray[plt.Axes] | None = None,
        max_extent: float | None = None,
        fontsize: float = 5,
        edgewidth: float = 0.125,
        title_y: float = 0.8,
        max_figure_height_cm: float = 9.271,
        panel_height_cm: float | str = "auto",
        max_figure_width_cm: float = 2.54,
        panel_width_cm: float = 2.54,
        annotate: bool = False,
        cbar: bool = False,
        hide_source_types: str | list | None = "auto",
        hide_source_types_bins: int = 5,
        hide_source_types_cut_off_edge: int = 1,
        hide_source_types_mode: str = "below_cut_off",
        max_axes: int | None = None,
        wspace: float = 0.0,
        hspace: float = 0.1,
        **kwargs,
    ) -> tuple[
        plt.Figure,
        np.ndarray[plt.Axes],
        tuple[plt.Colorbar, plt.Colormap, plt.Normalize, float, float],
    ]:
        """Plot a grid of spatial filters for different source types.

        Args:
            title: Title format string for each subplot.
            fig: Existing figure to use.
            axes: Existing axes to use.
            max_extent: Maximum extent of the spatial filter.
            fontsize: Font size for labels and titles.
            edgewidth: Width of edges in the plot.
            title_y: Y-position of the title.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            annotate: Whether to annotate the plots.
            cbar: Whether to add a colorbar.
            hide_source_types: Source types to hide or "auto".
            hide_source_types_bins: Number of bins for auto-hiding.
            hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
            hide_source_types_mode: Mode for auto-hiding source types.
            max_axes: Maximum number of axes to create.
            wspace: Width space between subplots.
            hspace: Height space between subplots.
            **kwargs: Additional keyword arguments for plot_spatial_filter.

        Returns:
            Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).
        """
        filter = self.rfs

        def filter_values(rf):
            return (rf.n_syn * rf.sign).values

        vmin = kwargs.pop("vmin", None) or (
            np.floor(
                min(
                    0,
                    min(
                        min(filter_values(filter[source_type]))
                        for source_type in self.source_types
                    ),
                )
                * 100
            )
            / 100
        )

        vmax = kwargs.pop("vmax", None) or (
            np.ceil(
                max(
                    0,
                    max(
                        max(filter_values(filter[source_type]))
                        for source_type in self.source_types
                    ),
                )
                * 100
            )
            / 100
        )

        source_types = self.filter_source_types(
            hide_source_types,
            bins=hide_source_types_bins,
            edge=hide_source_types_cut_off_edge,
            mode=hide_source_types_mode,
        )

        if fig is None and axes is None:
            figsize = figsize_from_n_items(
                max_axes or len(source_types),
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=(
                    max_figure_height_cm / (max_axes or len(source_types))
                    if panel_height_cm == "auto"
                    else panel_height_cm
                ),
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(
                unmask_n=max_axes or len(source_types), hspace=hspace, wspace=wspace
            )
            if max_axes is not None and len(source_types) < max_axes:
                for ax in np.array(axes).flatten():
                    if isinstance(ax, Axes):
                        ax.axis("off")

        for i, source_type in enumerate(source_types):
            self.plot_spatial_filter(
                source_type,
                title=title,
                fontsize=fontsize,
                edgewidth=edgewidth,
                title_y=title_y,
                fig=fig,
                ax=axes[i],
                vmin=vmin,
                vmax=vmax,
                annotate=annotate,
                cbar=False,
                max_extent=max_extent or filter.max_extent,
                **kwargs,
            )

        cmap = plt.cm.seismic
        norm = plt_utils.get_norm(vmin=vmin, vmax=vmax, midpoint=0)
        if cbar:
            cbar = plt_utils.add_colorbar_to_fig(
                fig,
                width=0.01,
                height=0.25,
                fontsize=fontsize,
                cmap=cmap,
                norm=norm,
                label="spatial filters",
                n_ticks=4,
                n_decimals=1,
            )
        return fig, axes, (cbar, cmap, norm, vmin, vmax)

    def view(
        self,
        currents: Namespace,
        rfs: ReceptiveFields | None = None,
        time: np.ndarray | None = None,
        responses: np.ndarray | None = None,
        arg_df: pd.DataFrame | None = None,
    ) -> "MovingEdgeCurrentView":
        """
        Create a new view with the given currents, rfs, time, responses, and arg_df.

        Args:
            currents: Currents for each source type.
            rfs: Receptive fields for the target cells.
            time: Time array for the simulation.
            responses: Responses of the target cells.
            arg_df: DataFrame containing stimulus arguments.

        Returns:
            A new view with the given data.
        """
        arg_df = arg_df.reset_index(drop=True) if arg_df is not None else self.arg_df
        return MovingEdgeCurrentView(
            self.ensemble,
            self.target_type,
            self.exp_data,
            arg_df,
            currents,
            rfs if rfs is not None else self.rfs,
            time if time is not None else self.time,
            responses if responses is not None else self.responses,
        )

    def subtract_baseline(self) -> "MovingEdgeCurrentView":
        """
        Create a new view with baseline subtracted from the currents and responses.

        Returns:
            A new view with baseline subtracted data.
        """
        return self.view(
            Namespace({
                cell_type: c - np.take(c, [0], -2)
                for cell_type, c in self.currents.items()
            }),
            responses=self.responses - np.take(self.responses, [0], -1),
        )

    def subtract_mean(self) -> "MovingEdgeCurrentView":
        """
        Create a new view with mean subtracted from the currents and responses.

        Returns:
            A new view with mean subtracted data.
        """
        return self.view(
            Namespace({
                cell_type: c - np.mean(c, -2, keepdims=True)
                for cell_type, c in self.currents.items()
            }),
            responses=self.responses - np.mean(self.responses, -1, keepdims=True),
        )

    def standardize(self) -> "MovingEdgeCurrentView":
        """
        Create a new view with standardized currents and responses.

        Returns:
            A new view with standardized data.
        """
        return self.view(
            Namespace({
                cell_type: (c - np.mean(c, -2, keepdims=True))
                / (np.std(c, -2, keepdims=True) + 1e-15)
                for cell_type, c in self.currents.items()
            }),
            responses=(self.responses - np.mean(self.responses, -1, keepdims=True))
            / (np.std(self.responses, -1, keepdims=True) + 1e-15),
        )

    def standardize_over_time_and_pd_nd(
        self, t_start: float, t_end: float, pd: float
    ) -> "MovingEdgeCurrentView":
        """
        Create a new view with standardized currents and responses over time and PD/ND.

        Args:
            t_start: Start time for standardization.
            t_end: End time for standardization.
            pd: Preferred direction for standardization.

        Returns:
            A new view with standardized data.
        """
        temp = self.between_seconds(t_start, t_end).at_angle([pd, (pd - 180) % 360])
        return self.view(
            Namespace({
                cell_type: (
                    c - np.mean(temp.currents[cell_type], (-2, -3), keepdims=True)
                )
                / (np.std(temp.currents[cell_type], (-2, -3), keepdims=True) + 1e-15)
                for cell_type, c in self.currents.items()
            }),
            responses=(self.responses - np.mean(temp.responses, (-1, -2), keepdims=True))
            / (np.std(temp.responses, (-1, -2), keepdims=True) + 1e-15),
        )

    def init_colors(self, source_types: list[str]) -> None:
        """
        Initialize colors for source types.

        Args:
            source_types: List of source types.
        """
        signs = self.signs()
        signs = {cell_type: signs[cell_type] for cell_type in source_types}
        signs_reversed = {cell_type: signs[cell_type] for cell_type in source_types[::-1]}
        n_exc = len([v for v in signs.values() if v == 1])
        n_inh = len([v for v in signs.values() if v == -1])
        exc_colors_pd = cmap_iter(
            truncate_colormap(plt.cm.RdBu, minval=0.05, maxval=0.45, n=n_exc)
        )
        inh_cmap_pd = cmap_iter(
            truncate_colormap(plt.cm.RdBu_r, minval=0.05, maxval=0.45, n=n_inh)
        )
        exc_colors_nd = cmap_iter(
            truncate_colormap(plt.cm.BrBG_r, minval=0.05, maxval=0.45, n=n_exc)
        )
        inh_cmap_nd = cmap_iter(
            truncate_colormap(plt.cm.BrBG, minval=0.05, maxval=0.45, n=n_inh)
        )
        colors_pd = {}
        colors_nd = {}
        for _, (cell_type, sign) in enumerate(signs.items()):
            if sign == 1:
                # take the first half of the RdBu colormap, i.e. red
                colors_pd[cell_type] = next(exc_colors_pd)
                colors_nd[cell_type] = next(exc_colors_nd)

        for _, (cell_type, sign) in enumerate(signs_reversed.items()):
            if sign == -1:
                # take the second half of the RdBu colormap, i.e. blue
                colors_pd[cell_type] = next(inh_cmap_pd)
                colors_nd[cell_type] = next(inh_cmap_nd)
        self.colors_pd = colors_pd
        self.colors_nd = colors_nd

    def color(self, source_type: str, pd: bool = True) -> tuple[float, float, float]:
        """
        Get the color for a given source type.

        Args:
            source_type: The source type.
            pd: Whether to use PD or ND colors.

        Returns:
            The color as an RGB tuple.
        """
        if pd:
            return self.colors_pd[source_type]
        return self.colors_nd[source_type]

    def zorder(
        self,
        source_types: list[str],
        source_type: str,
        start_exc: int = 1000,
        start_inh: int = 1000,
    ) -> int:
        """
        Get the z-order for a given source type.

        Args:
            source_types: List of source types.
            source_type: The source type.
            start_exc: Starting z-order for excitatory cells.
            start_inh: Starting z-order for inhibitory cells.

        Returns:
            The z-order for the given source type.
        """
        signs = self.signs()
        signs_reversed = {cell_type: signs[cell_type] for cell_type in source_types[::-1]}

        z_order = start_exc
        for _, (cell_type, sign) in enumerate(signs.items()):
            if sign == 1:
                if cell_type == source_type:
                    return z_order
                z_order -= 10

        z_order = start_inh
        for _, (cell_type, sign) in enumerate(signs_reversed.items()):
            if sign == -1:
                if cell_type == source_type:
                    return z_order
                z_order -= 10

    def ylims(
        self, source_types: list[str] | None = None, offset: float = 0.02
    ) -> dict[str, tuple[float, float]]:
        """
        Get the y-limits for temporal contributions summed over cells.

        Args:
            source_types: List of source types to consider.
            offset: Offset for the y-limits.

        Returns:
            Y-limits for the given source types or all source types.
        """
        if source_types is not None:
            return {
                cell_type: plt_utils.get_lims(c, offset)
                for cell_type, c in self.sum_over_cells().currents.items()
                if cell_type in source_types
            }
        return plt_utils.get_lims(list(self.sum_over_cells().currents.values()), offset)

    def plot_response(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        max_figure_height_cm: float = 1.4477,
        panel_height_cm: float = 1.4477,
        max_figure_width_cm: float = 4.0513,
        panel_width_cm: float = 4.0513,
        fontsize: float = 5,
        model_average: bool = True,
        color: tuple[float, float, float] = (0, 0, 0),
        legend: bool = False,
        hide_yaxis: bool = True,
        trim_axes: bool = True,
        quantile: float | None = None,
        scale_position: str | None = None,  # "lower left",
        scale_label: str = "{:.0f} ms",
        scale_unit: float = 1000,
        hline: bool = False,
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
    ):
        """
        Plot the response to a moving edge stimulus.

        Args:
            contrast: The contrast of the stimulus.
            angle: The angle of the stimulus.
            t_start: Start time for the plot.
            t_end: End time for the plot.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            fontsize: Font size for labels and titles.
            model_average: Whether to plot the model average.
            color: Color for the plot.
            legend: Whether to show the legend.
            hide_yaxis: Whether to hide the y-axis.
            trim_axes: Whether to trim the axes.
            quantile: Quantile for shading.
            scale_position: Position of the scale.
            scale_label: Label format for the scale.
            scale_unit: Unit for the scale.
            hline: Whether to show a horizontal line at 0.
            fig: Existing figure to use.
            ax: Existing axes to use.

        Returns:
            Figure and axes objects.
        """
        r_pd = (
            self.at_angle(angle)
            .at_contrast(contrast)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )
        r_nd = (
            self.at_angle((angle - 180) % 360)
            .at_contrast(contrast)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )

        if fig is None and ax is None:
            figsize = figsize_from_n_items(
                1,
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=panel_height_cm,
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
            ax = axes[0]

        color = [hex2color(PD), hex2color(ND)] if color is None else [color, color]

        if model_average:
            fig, ax, _, _ = plots.traces(
                [r_pd.mean(axis=0), r_nd.mean(axis=0)],
                x=self.between_seconds(t_start, t_end).time,
                color=color,
                linewidth=1,
                fontsize=fontsize,
                null_line=False,
                fig=fig,
                ax=ax,
                linestyle=["solid", "dashed"],
                legend="" if not legend else [f"{self.target_type}", "null direction"],
                scale_pos=scale_position,
                scale_label=scale_label,
                scale_unit=scale_unit,
            )
        else:
            fig, ax, _, _ = plots.traces(
                r_pd,
                x=self.between_seconds(t_start, t_end).time,
                mean_color=adapt_color_alpha(color[0], 1),
                color=adapt_color_alpha(color[0], 0.5),
                linewidth=0.25,
                zorder_traces=0,
                zorder_mean=10,
                fontsize=fontsize,
                null_line=False,
                highlight_mean=True,
                fig=fig,
                ax=ax,
            )
            plots.traces(
                r_nd,
                x=self.between_seconds(t_start, t_end).time,
                mean_color=adapt_color_alpha(color[1], 1),
                color=adapt_color_alpha(color[1], 0.5),
                linewidth=0.25,
                zorder_traces=0,
                zorder_mean=10,
                fontsize=fontsize,
                null_line=False,
                highlight_mean=True,
                fig=fig,
                linestyle="dashed",
                ax=ax,
            )
        if quantile:
            quantile_pd = np.quantile(r_pd, quantile, axis=0)
            quantile_nd = np.quantile(r_nd, quantile, axis=0)
            ax.fill_between(
                self.between_seconds(t_start, t_end).time,
                quantile_pd[0],
                quantile_pd[1],
                facecolor=adapt_color_alpha(color[0], 0.1),
                edgecolor=adapt_color_alpha(color[0], 1),
                linewidth=0.25,
            )
            ax.fill_between(
                self.between_seconds(t_start, t_end).time,
                quantile_nd[0],
                quantile_nd[1],
                facecolor=adapt_color_alpha(color[1], 0.1),
                edgecolor=adapt_color_alpha(color[1], 1),
                linewidth=0.25,
                linestyle="dashed",
            )

        if hline:
            # horizontal line at 0
            ax.axhline(0, color=(0, 0, 0, 1), linewidth=0.25, zorder=-10)

        if hide_yaxis:
            plt_utils.rm_spines(ax, ("left",))
        if trim_axes:
            plt_utils.trim_axis(ax)
        if legend:
            ax.legend(
                fontsize=fontsize,
                ncols=1,
                bbox_to_anchor=(1.05, 1),
                loc="upper left",
                borderaxespad=0.0,
            )
        return fig, ax

    def plot_response_pc_nc(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        max_figure_height_cm: float = 1.4477,
        panel_height_cm: float = 1.4477,
        max_figure_width_cm: float = 4.0513,
        panel_width_cm: float = 4.0513,
        fontsize: float = 5,
        model_average: bool = True,
        color: tuple[float, float, float] = (0, 0, 0),
        legend: bool = False,
        hide_yaxis: bool = True,
        trim_axes: bool = True,
        quantile: float | None = None,
        scale_position: str | None = None,
        scale_label: str = "{:.0f} ms",
        scale_unit: float = 1000,
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
        hline: bool = False,
    ) -> tuple[plt.Figure, plt.Axes]:
        """
        Plot the response to a moving edge stimulus with positive and negative contrasts.

        Args:
            contrast: The contrast of the stimulus.
            angle: The angle of the stimulus.
            t_start: Start time for the plot.
            t_end: End time for the plot.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            fontsize: Font size for labels and titles.
            model_average: Whether to plot the model average.
            color: Color for the plot.
            legend: Whether to show the legend.
            hide_yaxis: Whether to hide the y-axis.
            trim_axes: Whether to trim the axes.
            quantile: Quantile for shading.
            scale_position: Position of the scale.
            scale_label: Label format for the scale.
            scale_unit: Unit for the scale.
            fig: Existing figure to use.
            ax: Existing axes to use.
            hline: Whether to show a horizontal line at 0.

        Returns:
            Figure and axes objects.
        """
        r_pc = (
            self.at_angle(angle)
            .at_contrast(contrast)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )
        r_nc = (
            self.at_angle(angle)
            .at_contrast(0 if contrast == 1 else 1)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )

        if fig is None and ax is None:
            figsize = figsize_from_n_items(
                1,
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=panel_height_cm,
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
            ax = axes[0]

        color = [hex2color(PD), hex2color(ND)] if color is None else [color, color]

        if model_average:
            fig, ax, _, _ = plots.traces(
                [r_pc.mean(axis=0), r_nc.mean(axis=0)],
                x=self.between_seconds(t_start, t_end).time,
                color=color,
                linewidth=1,
                fontsize=fontsize,
                null_line=False,
                fig=fig,
                ax=ax,
                linestyle=["solid", "dotted"],
                legend="" if not legend else [f"{self.target_type}", "null contrast"],
                scale_pos=scale_position,
                scale_label=scale_label,
                scale_unit=scale_unit,
            )
        else:
            fig, ax, _, _ = plots.traces(
                r_pc,
                x=self.between_seconds(t_start, t_end).time,
                mean_color=adapt_color_alpha(color[0], 1),
                color=adapt_color_alpha(color[0], 0.5),
                linewidth=0.25,
                zorder_traces=0,
                zorder_mean=10,
                fontsize=fontsize,
                null_line=False,
                highlight_mean=True,
                fig=fig,
                ax=ax,
            )
            plots.traces(
                r_nc,
                x=self.between_seconds(t_start, t_end).time,
                mean_color=adapt_color_alpha(color[1], 1),
                color=adapt_color_alpha(color[1], 0.5),
                linewidth=0.25,
                zorder_traces=0,
                zorder_mean=10,
                fontsize=fontsize,
                null_line=False,
                highlight_mean=True,
                fig=fig,
                linestyle="dashed",
                ax=ax,
            )
        if quantile:
            quantile_pd = np.quantile(r_pc, quantile, axis=0)
            quantile_nd = np.quantile(r_nc, quantile, axis=0)
            ax.fill_between(
                self.between_seconds(t_start, t_end).time,
                quantile_pd[0],
                quantile_pd[1],
                facecolor=adapt_color_alpha(color[0], 0.1),
                edgecolor=adapt_color_alpha(color[0], 1),
                linewidth=0.25,
            )
            ax.fill_between(
                self.between_seconds(t_start, t_end).time,
                quantile_nd[0],
                quantile_nd[1],
                facecolor=adapt_color_alpha(color[1], 0.1),
                edgecolor=adapt_color_alpha(color[1], 1),
                linewidth=0.25,
                linestyle="dashed",
            )

        # horizontal line at 0
        if hline:
            ax.axhline(0, color=(0, 0, 0, 1), linewidth=0.25, zorder=-10)

        if hide_yaxis:
            plt_utils.rm_spines(ax, ("left",))
        if trim_axes:
            plt_utils.trim_axis(ax)
        if legend:
            ax.legend(
                fontsize=fontsize,
                ncols=1,
                bbox_to_anchor=(1.05, 1),
                loc="upper left",
                borderaxespad=0.0,
            )
        return fig, ax

    def plot_temporal_contributions(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        fontsize: float = 5,
        linewidth: float = 0.25,
        legend: bool = False,
        legend_standalone: bool = True,
        legend_figsize_cm: tuple[float, float] = (4.0572, 1),
        legend_n_rows: int | None = None,
        max_figure_height_cm: float = 3.3941,
        panel_height_cm: float = 3.3941,
        max_figure_width_cm: float = 4.0572,
        panel_width_cm: float = 4.0572,
        model_average: bool = True,
        highlight_mean: bool = True,  # only applies if model_average is False
        sum_exc_inh: bool = False,
        only_sum: bool = False,
        hide_source_types: str | list | None = "auto",
        hide_source_types_bins: int = 5,
        hide_source_types_cut_off_edge: int = 1,
        hide_source_types_mode: str = "below_cut_off",
        hide_yaxis: bool = True,
        trim_axes: bool = True,
        quantile: float | None = None,
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
        legend_ax: plt.Axes | None = None,
        hline: bool = True,
        legend_n_cols: int | None = None,
        baseline_color: tuple[float, float, float, float] | None = None,
        colors: dict[str, tuple[float, float, float, float]] | None = None,
    ):
        """
        Plot temporal contributions of different source types.

        Args:
            contrast: The contrast of the stimulus.
            angle: The angle of the stimulus.
            t_start: Start time for the plot.
            t_end: End time for the plot.
            fontsize: Font size for labels and titles.
            linewidth: Line width for traces.
            legend: Whether to show the legend.
            legend_standalone: Whether to create a standalone legend.
            legend_figsize_cm: Figure size for the standalone legend.
            legend_n_rows: Number of rows for the standalone legend.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            model_average: Whether to plot the model average.
            highlight_mean: Whether to highlight the mean trace.
            sum_exc_inh: Whether to sum excitatory and inhibitory contributions.
            only_sum: Whether to only plot the summed contributions.
            hide_source_types: Source types to hide or "auto".
            hide_source_types_bins: Number of bins for auto-hiding.
            hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
            hide_source_types_mode: Mode for auto-hiding source types.
            hide_yaxis: Whether to hide the y-axis.
            trim_axes: Whether to trim the axes.
            quantile: Quantile for shading.
            fig: Existing figure to use.
            ax: Existing axes to use.
            legend_ax: Existing axes for the standalone legend.
            hline: Whether to show a horizontal line at 0.
            legend_n_cols: Number of columns for the standalone legend.
            baseline_color: Color for the baseline.
            colors: Colors for each source type.

        Returns:
            Figure, axes, and legend axes objects.

        Example:
            ```
            view = MovingEdgeCurrentView(...)
            fig, ax = view.plot_temporal_contributions(
                contrast=1.0,
                angle=0,
                t_start=0,
                t_end=1,
                fontsize=5,
                linewidth=0.25,
                legend=True
            )
            ```
        """
        if fig is None and ax is None:
            figsize = figsize_from_n_items(
                1,
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=panel_height_cm,
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
            ax = axes[0]
        cv_pd = (
            self.at_contrast(contrast)
            .at_angle(angle)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )
        cv_nd = (
            self.at_contrast(contrast)
            .at_angle((angle - 180) % 360)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )

        source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                hide_source_types,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )

        color_source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                None,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )
        cv_pd.init_colors(color_source_types)
        cv_nd.init_colors(color_source_types)

        def plot_mean_trace(
            time, trace, label, color, zorder, linestyle="solid", ax=None, fig=None
        ):
            ax.plot(
                time,
                trace,
                label=label,
                color=color,
                zorder=zorder,
                linestyle=linestyle,
            )

        def plot_individual_traces(
            traces, time, color, zorder, label, linestyle="solid", legend=None
        ):
            if not only_sum and not model_average:
                plots.traces(
                    traces,
                    time,
                    mean_color=color,
                    color=color,
                    linewidth=linewidth,
                    zorder_traces=0,
                    zorder_mean=zorder,
                    fontsize=fontsize,
                    null_line=True,
                    highlight_mean=highlight_mean,
                    fig=fig,
                    ax=ax,
                    legend=legend or label,
                    linestyle=linestyle,
                )

        def plot_quantile(traces, time, color, zorder, linestyle="solid"):
            if quantile:
                Q = np.quantile(traces, quantile, axis=0)
                ax.fill_between(
                    time,
                    Q[0],
                    Q[1],
                    facecolor=adapt_color_alpha(color, 0.1),
                    edgecolor=color,
                    linewidth=0.25,
                    linestyle=linestyle,
                    zorder=zorder - 1,
                )

        def plot_summed_trace(time, trace, label, color, zorder, linestyle="solid"):
            if np.any(trace):
                ax.plot(
                    time,
                    trace,
                    label=label,
                    color=color,
                    zorder=zorder,
                    linestyle=linestyle,
                )

        def get_summed_traces(signs, source_types, cv_pd, cv_nd):
            # sum over cell types then average over models
            exc_pd = np.zeros(cv_pd.shape)
            inh_pd = np.zeros(cv_pd.shape)
            exc_nd = np.zeros(cv_nd.shape)
            inh_nd = np.zeros(cv_nd.shape)
            # sum over cell types
            for source_type in source_types:
                if signs[source_type] == 1:
                    exc_pd += cv_pd[source_type][:]  # (1, n_models, 1, n_timesteps)
                    exc_nd += cv_nd[source_type][:]
                else:
                    inh_pd += cv_pd[source_type][:]
                    inh_nd += cv_nd[source_type][:]
            # (n_models, n_timesteps)
            return (
                exc_pd.squeeze(),
                inh_pd.squeeze(),
                exc_nd.squeeze(),
                inh_nd.squeeze(),
            )

        for source_type in source_types:
            if model_average and not only_sum:
                # mean traces solid for PD and dashed for ND
                if baseline_color is not None:
                    color = baseline_color
                elif colors:
                    color = colors[source_type]
                else:
                    color = cv_pd.color(source_type)

                plot_mean_trace(
                    cv_pd.time,
                    cv_pd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                    source_type,
                    color,
                    cv_pd.zorder(source_types, source_type),
                    ax=ax,
                    fig=fig,
                )
                plot_mean_trace(
                    cv_nd.time,
                    cv_nd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                    source_type,
                    color,
                    linestyle="dashed",
                    zorder=cv_pd.zorder(source_types, source_type),
                    ax=ax,
                    fig=fig,
                )

            elif not model_average and not only_sum:
                # individual traces
                plot_individual_traces(
                    cv_pd[source_type][:].squeeze(axis=-2),
                    cv_pd.time,
                    cv_pd.color(source_type),
                    cv_pd.zorder(source_types, source_type),
                    source_type,
                )
                plot_individual_traces(
                    cv_nd[source_type][:].squeeze(axis=-2),
                    cv_nd.time,
                    cv_pd.color(source_type),
                    cv_pd.zorder(source_types, source_type),
                    source_type,
                    linestyle="dashed",
                    legend="null direction",
                )

            # quantiles
            plot_quantile(
                cv_pd[source_type][:].squeeze(axis=-2),
                cv_pd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                linestyle="solid",
            )
            plot_quantile(
                cv_nd[source_type][:].squeeze(axis=-2),
                cv_nd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                linestyle="dashed",
            )
        if sum_exc_inh or only_sum:
            # plot summed traces
            signs = cv_pd.signs()
            exc_pd, inh_pd, exc_nd, inh_nd = get_summed_traces(
                signs, source_types, cv_pd, cv_nd
            )
            plot_summed_trace(
                cv_pd.time,
                exc_pd.mean(axis=0),
                "excitatory",
                (0.931, 0.0, 0.0, 1.0),
                zorder=2000,
            )
            plot_quantile(
                exc_pd,
                cv_pd.time,
                (0.931, 0.0, 0.0, 1.0),
                zorder=0,
                linestyle="solid",
            )
            plot_summed_trace(
                cv_nd.time,
                exc_nd.mean(axis=0),
                "excitatory",
                (0.931, 0.0, 0.0, 1.0),
                zorder=2000,
                linestyle="dashed",
            )
            plot_quantile(
                exc_nd,
                cv_pd.time,
                (0.931, 0.0, 0.0, 1.0),
                zorder=0,
                linestyle="dashed",
            )
            plot_summed_trace(
                cv_pd.time,
                inh_pd.mean(axis=0),
                "inhibitory",
                (0.0, 0.0, 0.849, 1.0),
                zorder=2000,
            )
            plot_quantile(
                inh_pd,
                cv_pd.time,
                (0.0, 0.0, 0.849, 1.0),
                zorder=0,
                linestyle="solid",
            )
            plot_summed_trace(
                cv_nd.time,
                inh_nd.mean(axis=0),
                "inhibitory",
                (0.0, 0.0, 0.849, 1.0),
                zorder=2000,
                linestyle="dashed",
            )
            plot_quantile(
                inh_nd,
                cv_pd.time,
                (0.0, 0.0, 0.849, 1.0),
                zorder=0,
                linestyle="dashed",
            )

        if hline:
            ax.hlines(
                0,
                cv_pd.time.min(),
                cv_pd.time.max(),
                color=(0, 0, 0, 1),
                linewidth=0.25,
                zorder=-10,
            )

        if legend:
            ax.legend(
                fontsize=fontsize,
                ncols=1,
                bbox_to_anchor=(1.05, 1),
                loc="upper left",
                borderaxespad=0.0,
            )
        else:
            ax.legend().set_visible(False)

        ax.set_xlabel("time (s)", fontsize=fontsize)
        #         ax.set_ylabel("current (a.u.)", fontsize=fontsize)

        if hide_yaxis:
            plt_utils.rm_spines(ax, ("left",))

        if trim_axes:
            plt_utils.trim_axis(ax)

        if legend_standalone:
            handles, labels = ax.get_legend_handles_labels()
            nd_handle = Line2D(
                [0], [0], color="k", lw=1, label="null direction", ls="dashed"
            )
            legend_n_rows = legend_n_rows or len(labels) + 1
            # legend_n_cols = (len(labels) + 1) // legend_n_rows
            legend_fig, legend_ax = plt_utils.standalone_legend(
                [*labels[::2], "null direction"],
                None,
                [*handles[::2], nd_handle],
                fontsize=fontsize,
                n_cols=legend_n_cols,
                handlelength=2,
                columnspacing=0.8,
                labelspacing=0.25,
                figsize=cm_to_inch(legend_figsize_cm),
                fig=fig if legend_ax is not None else None,
                ax=legend_ax,
            )
            return fig, ax, legend_fig, legend_ax
        return fig, ax

    def plot_temporal_contributions_pc_nc(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        fontsize: float = 5,
        linewidth: float = 0.25,
        legend: bool = False,
        legend_standalone: bool = True,
        legend_figsize_cm: tuple[float, float] = (4.0572, 1),
        legend_n_rows: int | None = None,
        max_figure_height_cm: float = 3.3941,
        panel_height_cm: float = 3.3941,
        max_figure_width_cm: float = 4.0572,
        panel_width_cm: float = 4.0572,
        model_average: bool = True,
        highlight_mean: bool = True,
        sum_exc_inh: bool = False,
        only_sum: bool = False,
        hide_source_types: str | list | None = "auto",
        hide_source_types_bins: int = 5,
        hide_source_types_cut_off_edge: int = 1,
        hide_source_types_mode: str = "below_cut_off",
        hide_yaxis: bool = True,
        trim_axes: bool = True,
        quantile: float | None = None,
        fig: plt.Figure | None = None,
        ax: plt.Axes | None = None,
        legend_ax: plt.Axes | None = None,
        null_linestyle: str = "dotted",
        legend_n_cols: int | None = None,
    ) -> tuple[plt.Figure, plt.Axes, plt.Figure | None, plt.Axes | None]:
        """
        Temporal contributions of different source types for positive/negative contrasts.

        Args:
            contrast: The contrast of the stimulus.
            angle: The angle of the stimulus.
            t_start: Start time for the plot.
            t_end: End time for the plot.
            fontsize: Font size for labels and titles.
            linewidth: Line width for traces.
            legend: Whether to show the legend.
            legend_standalone: Whether to create a standalone legend.
            legend_figsize_cm: Figure size for the standalone legend.
            legend_n_rows: Number of rows for the standalone legend.
            max_figure_height_cm: Maximum figure height in centimeters.
            panel_height_cm: Height of each panel in centimeters.
            max_figure_width_cm: Maximum figure width in centimeters.
            panel_width_cm: Width of each panel in centimeters.
            model_average: Whether to plot the model average.
            highlight_mean: Whether to highlight the mean trace.
            sum_exc_inh: Whether to sum excitatory and inhibitory contributions.
            only_sum: Whether to only plot the summed contributions.
            hide_source_types: Source types to hide or "auto".
            hide_source_types_bins: Number of bins for auto-hiding.
            hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
            hide_source_types_mode: Mode for auto-hiding source types.
            hide_yaxis: Whether to hide the y-axis.
            trim_axes: Whether to trim the axes.
            quantile: Quantile for shading.
            fig: Existing figure to use.
            ax: Existing axes to use.
            legend_ax: Existing axes for the standalone legend.
            null_linestyle: Linestyle for null direction traces.
            legend_n_cols: Number of columns for the standalone legend.

        Returns:
            Figure, axes, and legend axes objects.

        Example:
            ```
            view = MovingEdgeCurrentView(...)
            fig, ax = view.plot_temporal_contributions_pc_nc(
                contrast=1.0,
                angle=0,
                t_start=0,
                t_end=1,
                fontsize=5,
                linewidth=0.25,
                legend=True
            )
            ```
        """
        if fig is None and ax is None:
            figsize = figsize_from_n_items(
                1,
                max_figure_height_cm=max_figure_height_cm,
                panel_height_cm=panel_height_cm,
                max_figure_width_cm=max_figure_width_cm,
                panel_width_cm=panel_width_cm,
            )
            fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
            ax = axes[0]
        cv_pd = (
            self.at_contrast(contrast)
            .at_angle(angle)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )
        cv_nd = (
            self.at_contrast(contrast)
            .at_angle((angle - 180) % 360)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )

        source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                hide_source_types,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )

        color_source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                None,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )
        cv_pd.init_colors(color_source_types)
        cv_nd.init_colors(color_source_types)

        def plot_mean_trace(
            time, trace, label, color, zorder, linestyle="solid", ax=None, fig=None
        ):
            ax.plot(
                time,
                trace,
                label=label,
                color=color,
                zorder=zorder,
                linestyle=linestyle,
            )

        def plot_individual_traces(
            traces, time, color, zorder, label, linestyle="solid", legend=None
        ):
            if not only_sum and not model_average:
                plots.traces(
                    traces,
                    time,
                    mean_color=color,
                    color=color,
                    linewidth=linewidth,
                    zorder_traces=0,
                    zorder_mean=zorder,
                    fontsize=fontsize,
                    null_line=True,
                    highlight_mean=highlight_mean,
                    fig=fig,
                    ax=ax,
                    legend=legend or label,
                    linestyle=linestyle,
                )

        def plot_quantile(traces, time, color, zorder, linestyle="solid"):
            if quantile:
                Q = np.quantile(traces, quantile, axis=0)
                ax.fill_between(
                    time,
                    Q[0],
                    Q[1],
                    facecolor=adapt_color_alpha(color, 0.1),
                    edgecolor=color,
                    linewidth=0.25,
                    linestyle=linestyle,
                    zorder=zorder - 1,
                )

        def plot_summed_trace(time, trace, label, color, zorder, linestyle="solid"):
            if np.any(trace):
                ax.plot(
                    time,
                    trace,
                    label=label,
                    color=color,
                    zorder=zorder,
                    linestyle=linestyle,
                )

        def get_summed_traces(signs, source_types, cv_pd, cv_nd):
            # sum over cell types then average over models
            exc_pd = np.zeros(cv_pd.shape)
            inh_pd = np.zeros(cv_pd.shape)
            exc_nd = np.zeros(cv_nd.shape)
            inh_nd = np.zeros(cv_nd.shape)
            # sum over cell types
            for source_type in source_types:
                if signs[source_type] == 1:
                    exc_pd += cv_pd[source_type][:]  # (1, n_models, 1, n_timesteps)
                    exc_nd += cv_nd[source_type][:]
                else:
                    inh_pd += cv_pd[source_type][:]
                    inh_nd += cv_nd[source_type][:]
            # (n_models, n_timesteps)
            return (
                exc_pd.squeeze(),
                inh_pd.squeeze(),
                exc_nd.squeeze(),
                inh_nd.squeeze(),
            )

        for source_type in source_types:
            if model_average and not only_sum:
                # mean traces solid for PD and dashed for ND
                color = cv_pd.color(source_type)

                plot_mean_trace(
                    cv_pd.time,
                    cv_pd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                    source_type,
                    color,
                    cv_pd.zorder(source_types, source_type),
                    ax=ax,
                    fig=fig,
                )
                plot_mean_trace(
                    cv_nd.time,
                    cv_nd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                    source_type,
                    color,
                    linestyle=null_linestyle,
                    zorder=cv_pd.zorder(source_types, source_type),
                    ax=ax,
                    fig=fig,
                )

            elif not model_average and not only_sum:
                # individual traces
                plot_individual_traces(
                    cv_pd[source_type][:].squeeze(axis=-2),
                    cv_pd.time,
                    cv_pd.color(source_type),
                    cv_pd.zorder(source_types, source_type),
                    source_type,
                )
                plot_individual_traces(
                    cv_nd[source_type][:].squeeze(axis=-2),
                    cv_nd.time,
                    cv_pd.color(source_type),
                    cv_pd.zorder(source_types, source_type),
                    source_type,
                    linestyle=null_linestyle,
                    legend="null direction",
                )

            # quantiles
            plot_quantile(
                cv_pd[source_type][:].squeeze(axis=-2),
                cv_pd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                linestyle="solid",
            )
            plot_quantile(
                cv_nd[source_type][:].squeeze(axis=-2),
                cv_nd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                linestyle=null_linestyle,
            )
        if sum_exc_inh or only_sum:
            # plot summed traces
            signs = cv_pd.signs()
            exc_pd, inh_pd, exc_nd, inh_nd = get_summed_traces(
                signs, source_types, cv_pd, cv_nd
            )
            plot_summed_trace(
                cv_pd.time,
                exc_pd.mean(axis=0),
                "excitatory",
                (0.931, 0.0, 0.0, 1.0),
                zorder=2000,
            )
            plot_quantile(
                exc_pd,
                cv_pd.time,
                (0.931, 0.0, 0.0, 1.0),
                zorder=0,
                linestyle="solid",
            )
            plot_summed_trace(
                cv_nd.time,
                exc_nd.mean(axis=0),
                "excitatory",
                (0.931, 0.0, 0.0, 1.0),
                zorder=2000,
                linestyle=null_linestyle,
            )
            plot_quantile(
                exc_nd,
                cv_pd.time,
                (0.931, 0.0, 0.0, 1.0),
                zorder=0,
                linestyle=null_linestyle,
            )
            plot_summed_trace(
                cv_pd.time,
                inh_pd.mean(axis=0),
                "inhibitory",
                (0.0, 0.0, 0.849, 1.0),
                zorder=2000,
            )
            plot_quantile(
                inh_pd,
                cv_pd.time,
                (0.0, 0.0, 0.849, 1.0),
                zorder=0,
                linestyle="solid",
            )
            plot_summed_trace(
                cv_nd.time,
                inh_nd.mean(axis=0),
                "inhibitory",
                (0.0, 0.0, 0.849, 1.0),
                zorder=2000,
                linestyle=null_linestyle,
            )
            plot_quantile(
                inh_nd,
                cv_pd.time,
                (0.0, 0.0, 0.849, 1.0),
                zorder=0,
                linestyle=null_linestyle,
            )

        if legend:
            ax.legend(
                fontsize=fontsize,
                ncols=1,
                bbox_to_anchor=(1.05, 1),
                loc="upper left",
                borderaxespad=0.0,
            )
        else:
            ax.legend().set_visible(False)

        ax.set_xlabel("time (s)", fontsize=fontsize)
        #         ax.set_ylabel("current (a.u.)", fontsize=fontsize)

        if hide_yaxis:
            plt_utils.rm_spines(ax, ("left",))

        if trim_axes:
            plt_utils.trim_axis(ax)

        if legend_standalone:
            handles, labels = ax.get_legend_handles_labels()
            nd_handle = Line2D(
                [0], [0], color="k", lw=1, label="null direction", ls=null_linestyle
            )
            legend_n_rows = legend_n_rows or len(labels) + 1
            # legend_n_cols = (len(labels) + 1) // legend_n_rows
            legend_fig, legend_ax = plt_utils.standalone_legend(
                [*labels[::2], "null direction"],
                None,
                [*handles[::2], nd_handle],
                fontsize=fontsize,
                n_cols=legend_n_cols,
                handlelength=2,
                columnspacing=0.8,
                labelspacing=0.25,
                figsize=cm_to_inch(legend_figsize_cm),
                fig=fig if legend_ax is not None else None,
                ax=legend_ax,
            )
            return fig, ax, legend_fig, legend_ax
        return fig, ax, None, None

    def get_temporal_contributions(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        hide_source_types: str | list | None = "auto",
        hide_source_types_bins: int = 5,
        hide_source_types_cut_off_edge: int = 1,
        hide_source_types_mode: str = "below_cut_off",
        summed_traces: bool = False,
    ) -> tuple[
        "MovingEdgeCurrentView" | np.ndarray,
        "MovingEdgeCurrentView" | np.ndarray,
        list[str],
        list[str],
    ]:
        cv_pd = (
            self.at_contrast(contrast)
            .at_angle(angle)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )
        cv_nd = (
            self.at_contrast(contrast)
            .at_angle((angle - 180) % 360)
            .between_seconds(t_start, t_end)
            .sum_over_cells()
        )

        source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                hide_source_types,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )

        color_source_types = (
            self.at_contrast(contrast)
            .at_angle([angle, (angle - 180) % 360])
            .between_seconds(t_start, t_end)
            .filter_source_types(
                None,
                hide_source_types_bins,
                hide_source_types_cut_off_edge,
                hide_source_types_mode,
            )
        )
        cv_pd.init_colors(color_source_types)
        cv_nd.init_colors(color_source_types)

        def get_summed_traces(signs, source_types, cv_pd, cv_nd):
            # sum over cell types then average over models
            exc_pd = np.zeros(cv_pd.shape)
            inh_pd = np.zeros(cv_pd.shape)
            exc_nd = np.zeros(cv_nd.shape)
            inh_nd = np.zeros(cv_nd.shape)
            # sum over cell types
            for source_type in source_types:
                if signs[source_type] == 1:
                    exc_pd += cv_pd[source_type][:]  # (1, n_models, 1, n_timesteps)
                    exc_nd += cv_nd[source_type][:]
                else:
                    inh_pd += cv_pd[source_type][:]
                    inh_nd += cv_nd[source_type][:]
            # (n_models, n_timesteps)
            return (
                exc_pd.squeeze(),
                inh_pd.squeeze(),
                exc_nd.squeeze(),
                inh_nd.squeeze(),
            )

        if summed_traces:
            exc_pd, inh_pd, exc_nd, inh_nd = get_summed_traces(
                cv_pd.signs(), source_types, cv_pd, cv_nd
            )
            # return exc_pd, inh_pd, exc_nd, inh_nd, source_types, color_source_types
            return exc_pd, inh_pd, exc_nd, inh_nd

        return cv_pd, cv_nd, source_types, color_source_types

    def get_response(
        self,
        contrast: float,
        angle: float,
        t_start: float = 0,
        t_end: float = 1,
        model_average: bool = True,
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        r_pd = (
            self.at_angle(angle)
            .at_contrast(contrast)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )
        r_nd = (
            self.at_angle((angle - 180) % 360)
            .at_contrast(contrast)
            .between_seconds(t_start, t_end)
            .responses.squeeze(axis=-2)
        )

        if model_average:
            return (
                r_pd.mean(axis=0),
                r_nd.mean(axis=0),
                self.between_seconds(t_start, t_end).time,
            )

        return r_pd, r_nd, self.between_seconds(t_start, t_end).time

on property

on

Return a view of the ON responses.

off property

off

Return a view of the OFF responses.

init_currents

init_currents(currents)

Initialize the currents for each source type.

Parameters:

Name Type Description Default
currents Namespace | None

Currents for each source type.

required
Source code in flyvision/analysis/moving_edge_currents.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def init_currents(self, currents: Namespace | None) -> None:
    """Initialize the currents for each source type.

    Args:
        currents: Currents for each source type.
    """
    if currents is not None:
        self.currents = currents
        return
    self.currents = Namespace()
    for source_type in self.rfs.source_types:
        # (on/off, n_models, n_angles, n_timesteps, n_input_cells)
        self.currents[source_type] = np.array(
            [
                np.array(exp.target_data[self.target_type].source_data[source_type])
                for exp in self.exp_data
            ],
        )

init_responses

init_responses(responses)

Initialize the responses of the target cells.

Parameters:

Name Type Description Default
responses ndarray | None

Responses of the target cells.

required
Source code in flyvision/analysis/moving_edge_currents.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def init_responses(self, responses: np.ndarray | None) -> None:
    """Initialize the responses of the target cells.

    Args:
        responses: Responses of the target cells.
    """
    if responses is not None:
        self.responses = responses
        return
    # (on/off, n_models, n_angles, n_timesteps)
    self.responses = np.array(
        [
            np.array(exp.target_data[self.target_type].activity_central)
            for exp in self.exp_data
        ],
    )

init_time

init_time(time)

Initialize the time array for the simulation.

Parameters:

Name Type Description Default
time ndarray | None

Time array for the simulation.

required
Source code in flyvision/analysis/moving_edge_currents.py
139
140
141
142
143
144
145
146
147
148
149
150
151
def init_time(self, time: np.ndarray | None) -> None:
    """Initialize the time array for the simulation.

    Args:
        time: Time array for the simulation.
    """
    if time is not None:
        self.time = time
        return
    self.time = self.time or (
        np.arange(0, next(iter(self.currents.values())).shape[-2]) * self.config.dt
        - self.config.t_pre
    )

divide_by_given_norm

divide_by_given_norm(norm)

Divide currents and responses by a given norm.

Parameters:

Name Type Description Default
norm CellTypeArray

The norm to divide by.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with normalized currents and responses.

Raises:

Type Description
ValueError

If norm is not a CellTypeArray.

Source code in flyvision/analysis/moving_edge_currents.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def divide_by_given_norm(self, norm: CellTypeArray) -> "MovingEdgeCurrentView":
    """Divide currents and responses by a given norm.

    Args:
        norm: The norm to divide by.

    Returns:
        A new view with normalized currents and responses.

    Raises:
        ValueError: If norm is not a CellTypeArray.
    """
    if not isinstance(norm, CellTypeArray):
        raise ValueError

    response_dims = np.arange(len(self.responses.shape))
    response_norm = np.expand_dims(
        norm[self.target_type].squeeze(), list(set(response_dims) - set([0]))
    )

    # divide the responses by the norm
    new_responses = self.responses[:] / response_norm

    # note: we also divide by the norm of the target cell type

    currents_dims = np.arange(len(next(iter(self.currents.values())).shape))

    currents_norm = np.expand_dims(
        norm[self.target_type].squeeze(), list(set(currents_dims) - set([0]))
    )

    # divide the currents by the norm
    new_currents = Namespace({
        cell_type: c / currents_norm for cell_type, c in self.currents.items()
    })
    return self.view(currents=new_currents, responses=new_responses)

at_contrast

at_contrast(contrast)

Create a new view filtered by contrast.

Parameters:

Name Type Description Default
contrast float

The contrast value to filter by.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with data filtered by the specified contrast.

Source code in flyvision/analysis/moving_edge_currents.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def at_contrast(self, contrast: float) -> "MovingEdgeCurrentView":
    """Create a new view filtered by contrast.

    Args:
        contrast: The contrast value to filter by.

    Returns:
        A new view with data filtered by the specified contrast.
    """
    contrast_index = get_stimulus_index(self.arg_df, intensity=contrast)
    arg_df = self.arg_df.iloc[contrast_index]
    return self.view(
        Namespace({
            cell_type: np.take(c, indices=contrast_index, axis=1)
            for cell_type, c in self.currents.items()
        }),
        responses=np.take(self.responses, indices=contrast_index, axis=1),
        arg_df=arg_df,
    )

at_angle

at_angle(angle)

Create a new view filtered by angle.

Parameters:

Name Type Description Default
angle float

The angle value to filter by.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with data filtered by the specified angle.

Source code in flyvision/analysis/moving_edge_currents.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def at_angle(self, angle: float) -> "MovingEdgeCurrentView":
    """Create a new view filtered by angle.

    Args:
        angle: The angle value to filter by.

    Returns:
        A new view with data filtered by the specified angle.
    """
    angle_index = get_stimulus_index(self.arg_df, angle=angle)
    arg_df = self.arg_df.iloc[angle_index]
    return self.view(
        Namespace({
            cell_type: np.take(c, indices=angle_index, axis=1)
            for cell_type, c in self.currents.items()
        }),
        responses=np.take(self.responses, indices=angle_index, axis=1),
        arg_df=arg_df,
    )

at_position

at_position(u=None, v=None, central=True)

Create a new view filtered by position.

Parameters:

Name Type Description Default
u float | None

The u-coordinate.

None
v float | None

The v-coordinate.

None
central bool

Whether to use central position.

True

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with data filtered by the specified position.

Source code in flyvision/analysis/moving_edge_currents.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def at_position(
    self, u: float | None = None, v: float | None = None, central: bool = True
) -> "MovingEdgeCurrentView":
    """Create a new view filtered by position.

    Args:
        u: The u-coordinate.
        v: The v-coordinate.
        central: Whether to use central position.

    Returns:
        A new view with data filtered by the specified position.
    """
    rfs = at_position(self.rfs, u, v, central)
    currents = Namespace({
        cell_type: c[:, :, :, :, rfs[cell_type].index]
        for cell_type, c in self.currents.items()
    })
    return self.view(currents, rfs=rfs)

between_seconds

between_seconds(t_start, t_end)

Create a new view filtered by time range.

Parameters:

Name Type Description Default
t_start float

Start time in seconds.

required
t_end float

End time in seconds.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with data filtered by the specified time range.

Source code in flyvision/analysis/moving_edge_currents.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def between_seconds(self, t_start: float, t_end: float) -> "MovingEdgeCurrentView":
    """Create a new view filtered by time range.

    Args:
        t_start: Start time in seconds.
        t_end: End time in seconds.

    Returns:
        A new view with data filtered by the specified time range.
    """
    slice = np.where((self.time >= t_start) & (self.time < t_end))[0]
    newview = self[:, :, slice, :]
    newview.time = self.time[slice]
    newview.responses = self.responses[:, :, slice]
    return newview

model_selection

model_selection(mask)

Create a new view with selected models.

Parameters:

Name Type Description Default
mask ndarray

Boolean mask for model selection.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with selected models.

Source code in flyvision/analysis/moving_edge_currents.py
294
295
296
297
298
299
300
301
302
303
def model_selection(self, mask: np.ndarray) -> "MovingEdgeCurrentView":
    """Create a new view with selected models.

    Args:
        mask: Boolean mask for model selection.

    Returns:
        A new view with selected models.
    """
    return self[mask, :, :, :]

sorting

sorting(average_over_models=True, mode='all')

Sort cell types based on their contributions.

Parameters:

Name Type Description Default
average_over_models bool

Whether to average over models.

True
mode str

Sorting mode (“all”, “excitatory”, or “inhibitory”).

'all'

Returns:

Type Description
ndarray

Sorted array of cell types.

Raises:

Type Description
ValueError

If an invalid mode is provided.

Source code in flyvision/analysis/moving_edge_currents.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def sorting(self, average_over_models: bool = True, mode: str = "all") -> np.ndarray:
    """Sort cell types based on their contributions.

    Args:
        average_over_models: Whether to average over models.
        mode: Sorting mode ("all", "excitatory", or "inhibitory").

    Returns:
        Sorted array of cell types.

    Raises:
        ValueError: If an invalid mode is provided.
    """
    summed = self if len(self.shape) == 4 else self.sum_over_cells()
    signs = self.signs()
    if average_over_models:
        absmax = {
            k: v * signs[k]
            for k, v in valmap(
                lambda v: np.nanmax(
                    np.abs(np.nanmean(v, axis=1, keepdims=True)),
                    axis=(0, 2, 3),
                ),
                summed[:],
            ).items()
        }
    else:
        # summing over on/off, angles and time to sort -- results in n_models sortings
        absmax = {
            k: v * signs[k]
            for k, v in valmap(
                lambda v: np.nanmax(np.abs(v), axis=(0, 2, 3)), summed[:]
            ).items()
        }
    cell_types = np.array(list(absmax.keys()))
    values = np.array(list(absmax.values()))
    sorting = np.argsort(values, axis=0).T
    #         if average_over_models:
    #             # add extra dimension here for the next operation
    #             sorting = sorting[None]
    self.sorted_cell_types = cell_types[sorting[:, ::-1]]

    # return all excitatory and inhibitory from most excitatory to most inhibitory
    if mode == "all":
        return self.sorted_cell_types
    # from most excitatory to least excitatory
    elif mode == "excitatory":
        assert average_over_models
        return np.array([
            cell_type
            for cell_type in self.sorted_cell_types[0]
            if signs[cell_type] == 1
        ])
    # from most inhibitory to least inhibitory
    elif mode == "inhibitory":
        assert average_over_models
        return np.array([
            cell_type
            for cell_type in self.sorted_cell_types[0][::-1]
            if signs[cell_type] == -1
        ])
    else:
        raise ValueError(f"mode {mode}")

filter_cell_types_by_contribution

filter_cell_types_by_contribution(
    bins=3,
    cut_off_edge=1,
    mode="above_cut_off",
    statistic=np.max,
)

Filter cell types based on their contribution.

Parameters:

Name Type Description Default
bins int

Number of bins for contribution levels.

3
cut_off_edge int

Edge index for cut-off.

1
mode str

Filtering mode (“above_cut_off” or “below_cut_off”).

'above_cut_off'
statistic Callable

Function to compute the statistic.

max

Returns:

Type Description
ndarray

Filtered array of cell types.

Raises:

Type Description
ValueError

If an invalid mode is provided.

Info

In principle, chunks the y-axis of the current plots into excitatory and inhibitory parts and each of the parts into bins. All cell types with currents above or below, depending on the mode, the specified bin edge are discarded.

Source code in flyvision/analysis/moving_edge_currents.py
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def filter_cell_types_by_contribution(
    self,
    bins: int = 3,
    cut_off_edge: int = 1,
    mode: str = "above_cut_off",
    statistic: Callable = np.max,
) -> np.ndarray:
    """Filter cell types based on their contribution.

    Args:
        bins: Number of bins for contribution levels.
        cut_off_edge: Edge index for cut-off.
        mode: Filtering mode ("above_cut_off" or "below_cut_off").
        statistic: Function to compute the statistic.

    Returns:
        Filtered array of cell types.

    Raises:
        ValueError: If an invalid mode is provided.

    Info:
        In principle, chunks the y-axis of the current plots into excitatory and
        inhibitory parts and each of the parts into bins. All cell types with currents
        above or below, depending on the mode, the specified bin edge are discarded.
    """
    sorting = self.sorting()[0]
    signs = self.signs()
    currents = self.sum_over_cells().currents

    filtered_cell_types = []
    for sign in [1, -1]:
        # compute the std over all inputs
        values = {
            cell_type: statistic(np.abs(currents[cell_type][:]))
            for cell_type in sorting
            if signs[cell_type] == sign
        }
        # bin into three bins
        # ala (low contribution, medium contribution, high contribution)
        counts, bins = np.histogram(list(values.values()), bins=bins)
        cut_off_value = bins[cut_off_edge]
        if mode == "above_cut_off":
            filtered_cell_types.extend(
                list(valfilter(lambda v, cut_off=cut_off_value: v >= cut_off, values))
            )
        elif mode == "below_cut_off":
            filtered_cell_types.extend(
                list(valfilter(lambda v, cut_off=cut_off_value: v < cut_off, values))
            )
        else:
            raise ValueError(f"mode {mode}")
    return np.array(filtered_cell_types)

filter_source_types

filter_source_types(
    hide_source_types, bins, edge, mode, statistic=np.max
)

Filter source types based on various criteria.

Parameters:

Name Type Description Default
hide_source_types str | list | None

Source types to hide or “auto”.

required
bins int

Number of bins for contribution levels.

required
edge int

Edge index for cut-off.

required
mode str

Filtering mode.

required
statistic Callable

Function to compute the statistic.

max

Returns:

Type Description
ndarray

Filtered array of source types.

Source code in flyvision/analysis/moving_edge_currents.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
def filter_source_types(
    self,
    hide_source_types: str | list | None,
    bins: int,
    edge: int,
    mode: str,
    statistic: Callable = np.max,
) -> np.ndarray:
    """Filter source types based on various criteria.

    Args:
        hide_source_types: Source types to hide or "auto".
        bins: Number of bins for contribution levels.
        edge: Edge index for cut-off.
        mode: Filtering mode.
        statistic: Function to compute the statistic.

    Returns:
        Filtered array of source types.
    """
    source_types = self.sorting()[0]
    if isinstance(hide_source_types, str) and hide_source_types == "auto":
        hide_source_types = self.filter_cell_types_by_contribution(
            bins=bins, cut_off_edge=edge, mode=mode, statistic=statistic
        )

    if hide_source_types is not None:
        source_types = np.array([
            source_type
            for source_type in source_types
            if source_type not in hide_source_types
        ])
    return source_types

signs

signs()

Compute the signs of receptive fields for each source type.

Returns:

Type Description
dict[str, float]

Dictionary of signs for each source type.

Source code in flyvision/analysis/moving_edge_currents.py
503
504
505
506
507
508
509
def signs(self) -> dict[str, float]:
    """Compute the signs of receptive fields for each source type.

    Returns:
        Dictionary of signs for each source type.
    """
    return {ct: np.mean(self.rfs[ct].sign) for ct in self.rfs.source_types}

sum_over_cells

sum_over_cells()

Sum currents over cells.

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with currents summed over cells.

Source code in flyvision/analysis/moving_edge_currents.py
511
512
513
514
515
516
517
518
519
520
521
def sum_over_cells(self) -> "MovingEdgeCurrentView":
    """Sum currents over cells.

    Returns:
        A new view with currents summed over cells.
    """
    return self.view(
        Namespace({
            cell_type: c.sum(axis=-1) for cell_type, c in self.currents.items()
        }),
    )

plot_spatial_contribution

plot_spatial_contribution(
    source_type,
    t_start,
    t_end,
    mode="peak",
    title="{source_type} :→",
    fig=None,
    ax=None,
    max_extent=None,
    **kwargs
)

Plot the spatial contribution of a source type.

Parameters:

Name Type Description Default
source_type str

The source type to plot.

required
t_start float

Start time for the plot.

required
t_end float

End time for the plot.

required
mode str

Mode for calculating values (“peak”, “mean”, or “std”).

'peak'
title str

Title format string for the plot.

'{source_type} :→'
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None
max_extent float | None

Maximum extent of the spatial filter.

None
**kwargs

Additional keyword arguments for plt_utils.kernel.

{}

Returns:

Type Description
Axes

Axes object containing the plot.

Source code in flyvision/analysis/moving_edge_currents.py
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def plot_spatial_contribution(
    self,
    source_type: str,
    t_start: float,
    t_end: float,
    mode: str = "peak",
    title: str = "{source_type} :→",
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
    max_extent: float | None = None,
    **kwargs,
) -> plt.Axes:
    """Plot the spatial contribution of a source type.

    Args:
        source_type: The source type to plot.
        t_start: Start time for the plot.
        t_end: End time for the plot.
        mode: Mode for calculating values ("peak", "mean", or "std").
        title: Title format string for the plot.
        fig: Existing figure to use.
        ax: Existing axes to use.
        max_extent: Maximum extent of the spatial filter.
        **kwargs: Additional keyword arguments for plt_utils.kernel.

    Returns:
        Axes object containing the plot.
    """
    current_view = kwargs.get("current_view") or (
        self.between_seconds(t_start, t_end)  # .at_contrast(contrast).at_angle(angle)
    )

    vmin = kwargs.get("vmin") or (
        np.floor(
            min(
                0,
                min(
                    current.mean(axis=(0, 1, 2)).min()
                    for current in list(current_view[:].values())
                ),
            )
            * 100
        )
        / 100
    )

    vmax = kwargs.get("vmax") or (
        np.ceil(
            max(
                0,
                max(
                    current.mean(axis=(0, 1, 2)).max()
                    for current in list(current_view[:].values())
                ),
            )
            * 100
        )
        / 100
    )

    u, v = current_view.rfs[source_type][["source_u", "source_v"]].values.T
    # average over models
    # (1, n_models, 1, n_timesteps, n_models) -> (n_timesteps, n_models)
    # import pdb

    # pdb.set_trace()
    values = current_view[source_type][:].mean(axis=(0, 1))
    if mode == "peak":
        values = values[
            np.argmax(np.abs(values), axis=0), np.arange(values.shape[-1])
        ]
    elif mode == "mean":
        values = np.mean(values, axis=0)
    elif mode == "std":
        signs = self.signs()
        values = signs[source_type] * np.std(values, axis=0)
    fig, ax, _ = plots.kernel(
        u,
        v,
        values,
        fill=True,
        max_extent=max_extent or current_view.rfs.max_extent,
        label=title.format(source_type=source_type),
        labelxy="auto",
        strict_sign=False,
        fig=fig,
        ax=ax,
        **kwargs,
    )
    (xmin, ymin, xmax, ymax) = ax.dataLim.extents
    ax.set_xlim(plt_utils.get_lims((xmin, xmax), 0.01))
    ax.set_ylim(plt_utils.get_lims((ymin, ymax), 0.01))

plot_spatial_contribution_grid

plot_spatial_contribution_grid(
    t_start,
    t_end,
    max_extent=3,
    mode="peak",
    title="{source_type} :→",
    fig=None,
    axes=None,
    fontsize=5,
    edgewidth=0.125,
    title_y=0.8,
    max_figure_height_cm=9.271,
    panel_height_cm="auto",
    max_figure_width_cm=2.54,
    panel_width_cm=2.54,
    annotate=False,
    cbar=False,
    hide_source_types="auto",
    hide_source_types_bins=5,
    hide_source_types_cut_off_edge=1,
    hide_source_types_mode="below_cut_off",
    max_axes=None,
    **kwargs
)

Plot a grid of spatial contributions for different source types.

Parameters:

Name Type Description Default
t_start float

Start time for the plot.

required
t_end float

End time for the plot.

required
max_extent float

Maximum extent of the spatial filter.

3
mode str

Mode for calculating values (“peak”, “mean”, or “std”).

'peak'
title str

Title format string for each subplot.

'{source_type} :→'
fig Figure | None

Existing figure to use.

None
axes ndarray[Axes] | None

Existing axes to use.

None
fontsize float

Font size for labels and titles.

5
edgewidth float

Width of edges in the plot.

0.125
title_y float

Y-position of the title.

0.8
max_figure_height_cm float

Maximum figure height in centimeters.

9.271
panel_height_cm float | str

Height of each panel in centimeters.

'auto'
max_figure_width_cm float

Maximum figure width in centimeters.

2.54
panel_width_cm float

Width of each panel in centimeters.

2.54
annotate bool

Whether to annotate the plots.

False
cbar bool

Whether to add a colorbar.

False
hide_source_types str | list | None

Source types to hide or “auto”.

'auto'
hide_source_types_bins int

Number of bins for auto-hiding.

5
hide_source_types_cut_off_edge int

Cut-off edge for auto-hiding.

1
hide_source_types_mode str

Mode for auto-hiding source types.

'below_cut_off'
max_axes int | None

Maximum number of axes to create.

None
**kwargs

Additional keyword arguments for plot_spatial_contribution.

{}

Returns:

Type Description
tuple[Figure, ndarray[Axes], tuple[Colorbar, Colormap, Normalize, float, float]]

Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).

Source code in flyvision/analysis/moving_edge_currents.py
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
def plot_spatial_contribution_grid(
    self,
    t_start: float,
    t_end: float,
    max_extent: float = 3,
    mode: str = "peak",
    title: str = "{source_type} :→",
    fig: plt.Figure | None = None,
    axes: np.ndarray[plt.Axes] | None = None,
    fontsize: float = 5,
    edgewidth: float = 0.125,
    title_y: float = 0.8,
    max_figure_height_cm: float = 9.271,
    panel_height_cm: float | str = "auto",
    max_figure_width_cm: float = 2.54,
    panel_width_cm: float = 2.54,
    annotate: bool = False,
    cbar: bool = False,
    hide_source_types: str | list | None = "auto",
    hide_source_types_bins: int = 5,
    hide_source_types_cut_off_edge: int = 1,
    hide_source_types_mode: str = "below_cut_off",
    max_axes: int | None = None,
    **kwargs,
) -> tuple[
    plt.Figure,
    np.ndarray[plt.Axes],
    tuple[plt.Colorbar, plt.Colormap, plt.Normalize, float, float],
]:
    """Plot a grid of spatial contributions for different source types.

    Args:
        t_start: Start time for the plot.
        t_end: End time for the plot.
        max_extent: Maximum extent of the spatial filter.
        mode: Mode for calculating values ("peak", "mean", or "std").
        title: Title format string for each subplot.
        fig: Existing figure to use.
        axes: Existing axes to use.
        fontsize: Font size for labels and titles.
        edgewidth: Width of edges in the plot.
        title_y: Y-position of the title.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        annotate: Whether to annotate the plots.
        cbar: Whether to add a colorbar.
        hide_source_types: Source types to hide or "auto".
        hide_source_types_bins: Number of bins for auto-hiding.
        hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
        hide_source_types_mode: Mode for auto-hiding source types.
        max_axes: Maximum number of axes to create.
        **kwargs: Additional keyword arguments for plot_spatial_contribution.

    Returns:
        Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).
    """
    current_view = self.between_seconds(t_start, t_end)

    vmin = (
        np.floor(
            min(
                0,
                min(
                    current.mean(axis=(0, 1, 2)).min()
                    for current in list(current_view[:].values())
                ),
            )
            * 10
        )
        / 10
    )

    vmax = (
        np.ceil(
            max(
                0,
                max(
                    current.mean(axis=(0, 1, 2)).max()
                    for current in list(current_view[:].values())
                ),
            )
            * 10
        )
        / 10
    )

    source_types = self.filter_source_types(
        hide_source_types,
        bins=hide_source_types_bins,
        edge=hide_source_types_cut_off_edge,
        mode=hide_source_types_mode,
    )

    if fig is None and axes is None:
        figsize = figsize_from_n_items(
            max_axes or len(source_types),
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=(
                max_figure_height_cm / (max_axes or len(source_types))
                if panel_height_cm == "auto"
                else panel_height_cm
            ),
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(
            unmask_n=max_axes or len(source_types), hspace=0.1, wspace=0
        )
        if max_axes is not None and len(source_types) < max_axes:
            for ax in np.array(axes).flatten():
                if isinstance(ax, Axes):
                    ax.axis("off")

    for i, source_type in enumerate(source_types):
        self.plot_spatial_contribution(
            source_type,
            #                 contrast,
            #                 angle,
            t_start,
            t_end,
            mode=mode,
            title=title,
            fontsize=fontsize,
            edgewidth=edgewidth,
            title_y=title_y,
            fig=fig,
            ax=axes[i],
            current_view=current_view,
            vmin=vmin,
            vmax=vmax,
            annotate=annotate,
            cbar=False,
            max_extent=max_extent or current_view.rfs.max_extent,
            **kwargs,
        )

    cmap = plt.cm.seismic
    norm = plt_utils.get_norm(vmin=vmin, vmax=vmax, midpoint=0)
    if cbar:
        cbar = plt_utils.add_colorbar_to_fig(
            fig,
            width=0.01,
            height=0.25,
            fontsize=fontsize,
            cmap=cmap,
            norm=norm,
            label=f"{mode} input currents",
            n_ticks=4,
            n_decimals=1,
        )
    return fig, axes, (cbar, cmap, norm, vmin, vmax)

plot_spatial_filter

plot_spatial_filter(
    source_type,
    title="{source_type} :→",
    fig=None,
    ax=None,
    max_extent=None,
    **kwargs
)

Plot the spatial filter for a given source type.

Parameters:

Name Type Description Default
source_type str

The source type to plot.

required
title str

Title format string for the plot.

'{source_type} :→'
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None
max_extent float | None

Maximum extent of the spatial filter.

None
**kwargs

Additional keyword arguments for plt_utils.kernel.

{}

Returns:

Type Description
Axes

Axes object containing the plot.

Source code in flyvision/analysis/moving_edge_currents.py
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
def plot_spatial_filter(
    self,
    source_type: str,
    title: str = "{source_type} :→",
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
    max_extent: float | None = None,
    **kwargs,
) -> plt.Axes:
    """Plot the spatial filter for a given source type.

    Args:
        source_type: The source type to plot.
        title: Title format string for the plot.
        fig: Existing figure to use.
        ax: Existing axes to use.
        max_extent: Maximum extent of the spatial filter.
        **kwargs: Additional keyword arguments for plt_utils.kernel.

    Returns:
        Axes object containing the plot.
    """
    filter = self.rfs

    def filter_values(rf):
        return (rf.n_syn * rf.sign).values

    vmin = kwargs.pop("vmin", None) or (
        np.floor(
            min(
                0,
                min(
                    min(filter_values(filter[source_type]))
                    for source_type in self.source_types
                ),
            )
            * 100
        )
        / 100
    )

    vmax = kwargs.pop("vmax", None) or (
        np.ceil(
            max(
                0,
                max(
                    max(filter_values(filter[source_type]))
                    for source_type in self.source_types
                ),
            )
            * 100
        )
        / 100
    )

    u, v = filter[source_type][["source_u", "source_v"]].values.T
    # average over models
    # (1, n_models, 1, n_timesteps, n_models) -> (n_timesteps, n_models)
    values = filter_values(filter[source_type])

    label = title.format(source_type=source_type)
    fig, ax, _ = plt_utils.kernel(
        u,
        v,
        values,
        fill=True,
        max_extent=max_extent or filter.max_extent,
        label=label,
        labelxy="auto",
        strict_sign=False,
        fig=fig,
        ax=ax,
        vmin=vmin,
        vmax=vmax,
        **kwargs,
    )
    (xmin, ymin, xmax, ymax) = ax.dataLim.extents
    ax.set_xlim(plt_utils.get_lims((xmin, xmax), 0.01))
    ax.set_ylim(plt_utils.get_lims((ymin, ymax), 0.01))
    return ax

plot_spatial_filter_grid

plot_spatial_filter_grid(
    title="{source_type} :→",
    fig=None,
    axes=None,
    max_extent=None,
    fontsize=5,
    edgewidth=0.125,
    title_y=0.8,
    max_figure_height_cm=9.271,
    panel_height_cm="auto",
    max_figure_width_cm=2.54,
    panel_width_cm=2.54,
    annotate=False,
    cbar=False,
    hide_source_types="auto",
    hide_source_types_bins=5,
    hide_source_types_cut_off_edge=1,
    hide_source_types_mode="below_cut_off",
    max_axes=None,
    wspace=0.0,
    hspace=0.1,
    **kwargs
)

Plot a grid of spatial filters for different source types.

Parameters:

Name Type Description Default
title str

Title format string for each subplot.

'{source_type} :→'
fig Figure | None

Existing figure to use.

None
axes ndarray[Axes] | None

Existing axes to use.

None
max_extent float | None

Maximum extent of the spatial filter.

None
fontsize float

Font size for labels and titles.

5
edgewidth float

Width of edges in the plot.

0.125
title_y float

Y-position of the title.

0.8
max_figure_height_cm float

Maximum figure height in centimeters.

9.271
panel_height_cm float | str

Height of each panel in centimeters.

'auto'
max_figure_width_cm float

Maximum figure width in centimeters.

2.54
panel_width_cm float

Width of each panel in centimeters.

2.54
annotate bool

Whether to annotate the plots.

False
cbar bool

Whether to add a colorbar.

False
hide_source_types str | list | None

Source types to hide or “auto”.

'auto'
hide_source_types_bins int

Number of bins for auto-hiding.

5
hide_source_types_cut_off_edge int

Cut-off edge for auto-hiding.

1
hide_source_types_mode str

Mode for auto-hiding source types.

'below_cut_off'
max_axes int | None

Maximum number of axes to create.

None
wspace float

Width space between subplots.

0.0
hspace float

Height space between subplots.

0.1
**kwargs

Additional keyword arguments for plot_spatial_filter.

{}

Returns:

Type Description
tuple[Figure, ndarray[Axes], tuple[Colorbar, Colormap, Normalize, float, float]]

Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).

Source code in flyvision/analysis/moving_edge_currents.py
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
def plot_spatial_filter_grid(
    self,
    title: str = "{source_type} :→",
    fig: plt.Figure | None = None,
    axes: np.ndarray[plt.Axes] | None = None,
    max_extent: float | None = None,
    fontsize: float = 5,
    edgewidth: float = 0.125,
    title_y: float = 0.8,
    max_figure_height_cm: float = 9.271,
    panel_height_cm: float | str = "auto",
    max_figure_width_cm: float = 2.54,
    panel_width_cm: float = 2.54,
    annotate: bool = False,
    cbar: bool = False,
    hide_source_types: str | list | None = "auto",
    hide_source_types_bins: int = 5,
    hide_source_types_cut_off_edge: int = 1,
    hide_source_types_mode: str = "below_cut_off",
    max_axes: int | None = None,
    wspace: float = 0.0,
    hspace: float = 0.1,
    **kwargs,
) -> tuple[
    plt.Figure,
    np.ndarray[plt.Axes],
    tuple[plt.Colorbar, plt.Colormap, plt.Normalize, float, float],
]:
    """Plot a grid of spatial filters for different source types.

    Args:
        title: Title format string for each subplot.
        fig: Existing figure to use.
        axes: Existing axes to use.
        max_extent: Maximum extent of the spatial filter.
        fontsize: Font size for labels and titles.
        edgewidth: Width of edges in the plot.
        title_y: Y-position of the title.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        annotate: Whether to annotate the plots.
        cbar: Whether to add a colorbar.
        hide_source_types: Source types to hide or "auto".
        hide_source_types_bins: Number of bins for auto-hiding.
        hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
        hide_source_types_mode: Mode for auto-hiding source types.
        max_axes: Maximum number of axes to create.
        wspace: Width space between subplots.
        hspace: Height space between subplots.
        **kwargs: Additional keyword arguments for plot_spatial_filter.

    Returns:
        Figure, axes, and colorbar information (cbar, cmap, norm, vmin, vmax).
    """
    filter = self.rfs

    def filter_values(rf):
        return (rf.n_syn * rf.sign).values

    vmin = kwargs.pop("vmin", None) or (
        np.floor(
            min(
                0,
                min(
                    min(filter_values(filter[source_type]))
                    for source_type in self.source_types
                ),
            )
            * 100
        )
        / 100
    )

    vmax = kwargs.pop("vmax", None) or (
        np.ceil(
            max(
                0,
                max(
                    max(filter_values(filter[source_type]))
                    for source_type in self.source_types
                ),
            )
            * 100
        )
        / 100
    )

    source_types = self.filter_source_types(
        hide_source_types,
        bins=hide_source_types_bins,
        edge=hide_source_types_cut_off_edge,
        mode=hide_source_types_mode,
    )

    if fig is None and axes is None:
        figsize = figsize_from_n_items(
            max_axes or len(source_types),
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=(
                max_figure_height_cm / (max_axes or len(source_types))
                if panel_height_cm == "auto"
                else panel_height_cm
            ),
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(
            unmask_n=max_axes or len(source_types), hspace=hspace, wspace=wspace
        )
        if max_axes is not None and len(source_types) < max_axes:
            for ax in np.array(axes).flatten():
                if isinstance(ax, Axes):
                    ax.axis("off")

    for i, source_type in enumerate(source_types):
        self.plot_spatial_filter(
            source_type,
            title=title,
            fontsize=fontsize,
            edgewidth=edgewidth,
            title_y=title_y,
            fig=fig,
            ax=axes[i],
            vmin=vmin,
            vmax=vmax,
            annotate=annotate,
            cbar=False,
            max_extent=max_extent or filter.max_extent,
            **kwargs,
        )

    cmap = plt.cm.seismic
    norm = plt_utils.get_norm(vmin=vmin, vmax=vmax, midpoint=0)
    if cbar:
        cbar = plt_utils.add_colorbar_to_fig(
            fig,
            width=0.01,
            height=0.25,
            fontsize=fontsize,
            cmap=cmap,
            norm=norm,
            label="spatial filters",
            n_ticks=4,
            n_decimals=1,
        )
    return fig, axes, (cbar, cmap, norm, vmin, vmax)

view

view(
    currents,
    rfs=None,
    time=None,
    responses=None,
    arg_df=None,
)

Create a new view with the given currents, rfs, time, responses, and arg_df.

Parameters:

Name Type Description Default
currents Namespace

Currents for each source type.

required
rfs ReceptiveFields | None

Receptive fields for the target cells.

None
time ndarray | None

Time array for the simulation.

None
responses ndarray | None

Responses of the target cells.

None
arg_df DataFrame | None

DataFrame containing stimulus arguments.

None

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with the given data.

Source code in flyvision/analysis/moving_edge_currents.py
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
def view(
    self,
    currents: Namespace,
    rfs: ReceptiveFields | None = None,
    time: np.ndarray | None = None,
    responses: np.ndarray | None = None,
    arg_df: pd.DataFrame | None = None,
) -> "MovingEdgeCurrentView":
    """
    Create a new view with the given currents, rfs, time, responses, and arg_df.

    Args:
        currents: Currents for each source type.
        rfs: Receptive fields for the target cells.
        time: Time array for the simulation.
        responses: Responses of the target cells.
        arg_df: DataFrame containing stimulus arguments.

    Returns:
        A new view with the given data.
    """
    arg_df = arg_df.reset_index(drop=True) if arg_df is not None else self.arg_df
    return MovingEdgeCurrentView(
        self.ensemble,
        self.target_type,
        self.exp_data,
        arg_df,
        currents,
        rfs if rfs is not None else self.rfs,
        time if time is not None else self.time,
        responses if responses is not None else self.responses,
    )

subtract_baseline

subtract_baseline()

Create a new view with baseline subtracted from the currents and responses.

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with baseline subtracted data.

Source code in flyvision/analysis/moving_edge_currents.py
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
def subtract_baseline(self) -> "MovingEdgeCurrentView":
    """
    Create a new view with baseline subtracted from the currents and responses.

    Returns:
        A new view with baseline subtracted data.
    """
    return self.view(
        Namespace({
            cell_type: c - np.take(c, [0], -2)
            for cell_type, c in self.currents.items()
        }),
        responses=self.responses - np.take(self.responses, [0], -1),
    )

subtract_mean

subtract_mean()

Create a new view with mean subtracted from the currents and responses.

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with mean subtracted data.

Source code in flyvision/analysis/moving_edge_currents.py
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
def subtract_mean(self) -> "MovingEdgeCurrentView":
    """
    Create a new view with mean subtracted from the currents and responses.

    Returns:
        A new view with mean subtracted data.
    """
    return self.view(
        Namespace({
            cell_type: c - np.mean(c, -2, keepdims=True)
            for cell_type, c in self.currents.items()
        }),
        responses=self.responses - np.mean(self.responses, -1, keepdims=True),
    )

standardize

standardize()

Create a new view with standardized currents and responses.

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with standardized data.

Source code in flyvision/analysis/moving_edge_currents.py
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
def standardize(self) -> "MovingEdgeCurrentView":
    """
    Create a new view with standardized currents and responses.

    Returns:
        A new view with standardized data.
    """
    return self.view(
        Namespace({
            cell_type: (c - np.mean(c, -2, keepdims=True))
            / (np.std(c, -2, keepdims=True) + 1e-15)
            for cell_type, c in self.currents.items()
        }),
        responses=(self.responses - np.mean(self.responses, -1, keepdims=True))
        / (np.std(self.responses, -1, keepdims=True) + 1e-15),
    )

standardize_over_time_and_pd_nd

standardize_over_time_and_pd_nd(t_start, t_end, pd)

Create a new view with standardized currents and responses over time and PD/ND.

Parameters:

Name Type Description Default
t_start float

Start time for standardization.

required
t_end float

End time for standardization.

required
pd float

Preferred direction for standardization.

required

Returns:

Type Description
'MovingEdgeCurrentView'

A new view with standardized data.

Source code in flyvision/analysis/moving_edge_currents.py
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def standardize_over_time_and_pd_nd(
    self, t_start: float, t_end: float, pd: float
) -> "MovingEdgeCurrentView":
    """
    Create a new view with standardized currents and responses over time and PD/ND.

    Args:
        t_start: Start time for standardization.
        t_end: End time for standardization.
        pd: Preferred direction for standardization.

    Returns:
        A new view with standardized data.
    """
    temp = self.between_seconds(t_start, t_end).at_angle([pd, (pd - 180) % 360])
    return self.view(
        Namespace({
            cell_type: (
                c - np.mean(temp.currents[cell_type], (-2, -3), keepdims=True)
            )
            / (np.std(temp.currents[cell_type], (-2, -3), keepdims=True) + 1e-15)
            for cell_type, c in self.currents.items()
        }),
        responses=(self.responses - np.mean(temp.responses, (-1, -2), keepdims=True))
        / (np.std(temp.responses, (-1, -2), keepdims=True) + 1e-15),
    )

init_colors

init_colors(source_types)

Initialize colors for source types.

Parameters:

Name Type Description Default
source_types list[str]

List of source types.

required
Source code in flyvision/analysis/moving_edge_currents.py
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
def init_colors(self, source_types: list[str]) -> None:
    """
    Initialize colors for source types.

    Args:
        source_types: List of source types.
    """
    signs = self.signs()
    signs = {cell_type: signs[cell_type] for cell_type in source_types}
    signs_reversed = {cell_type: signs[cell_type] for cell_type in source_types[::-1]}
    n_exc = len([v for v in signs.values() if v == 1])
    n_inh = len([v for v in signs.values() if v == -1])
    exc_colors_pd = cmap_iter(
        truncate_colormap(plt.cm.RdBu, minval=0.05, maxval=0.45, n=n_exc)
    )
    inh_cmap_pd = cmap_iter(
        truncate_colormap(plt.cm.RdBu_r, minval=0.05, maxval=0.45, n=n_inh)
    )
    exc_colors_nd = cmap_iter(
        truncate_colormap(plt.cm.BrBG_r, minval=0.05, maxval=0.45, n=n_exc)
    )
    inh_cmap_nd = cmap_iter(
        truncate_colormap(plt.cm.BrBG, minval=0.05, maxval=0.45, n=n_inh)
    )
    colors_pd = {}
    colors_nd = {}
    for _, (cell_type, sign) in enumerate(signs.items()):
        if sign == 1:
            # take the first half of the RdBu colormap, i.e. red
            colors_pd[cell_type] = next(exc_colors_pd)
            colors_nd[cell_type] = next(exc_colors_nd)

    for _, (cell_type, sign) in enumerate(signs_reversed.items()):
        if sign == -1:
            # take the second half of the RdBu colormap, i.e. blue
            colors_pd[cell_type] = next(inh_cmap_pd)
            colors_nd[cell_type] = next(inh_cmap_nd)
    self.colors_pd = colors_pd
    self.colors_nd = colors_nd

color

color(source_type, pd=True)

Get the color for a given source type.

Parameters:

Name Type Description Default
source_type str

The source type.

required
pd bool

Whether to use PD or ND colors.

True

Returns:

Type Description
tuple[float, float, float]

The color as an RGB tuple.

Source code in flyvision/analysis/moving_edge_currents.py
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
def color(self, source_type: str, pd: bool = True) -> tuple[float, float, float]:
    """
    Get the color for a given source type.

    Args:
        source_type: The source type.
        pd: Whether to use PD or ND colors.

    Returns:
        The color as an RGB tuple.
    """
    if pd:
        return self.colors_pd[source_type]
    return self.colors_nd[source_type]

zorder

zorder(
    source_types,
    source_type,
    start_exc=1000,
    start_inh=1000,
)

Get the z-order for a given source type.

Parameters:

Name Type Description Default
source_types list[str]

List of source types.

required
source_type str

The source type.

required
start_exc int

Starting z-order for excitatory cells.

1000
start_inh int

Starting z-order for inhibitory cells.

1000

Returns:

Type Description
int

The z-order for the given source type.

Source code in flyvision/analysis/moving_edge_currents.py
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
def zorder(
    self,
    source_types: list[str],
    source_type: str,
    start_exc: int = 1000,
    start_inh: int = 1000,
) -> int:
    """
    Get the z-order for a given source type.

    Args:
        source_types: List of source types.
        source_type: The source type.
        start_exc: Starting z-order for excitatory cells.
        start_inh: Starting z-order for inhibitory cells.

    Returns:
        The z-order for the given source type.
    """
    signs = self.signs()
    signs_reversed = {cell_type: signs[cell_type] for cell_type in source_types[::-1]}

    z_order = start_exc
    for _, (cell_type, sign) in enumerate(signs.items()):
        if sign == 1:
            if cell_type == source_type:
                return z_order
            z_order -= 10

    z_order = start_inh
    for _, (cell_type, sign) in enumerate(signs_reversed.items()):
        if sign == -1:
            if cell_type == source_type:
                return z_order
            z_order -= 10

ylims

ylims(source_types=None, offset=0.02)

Get the y-limits for temporal contributions summed over cells.

Parameters:

Name Type Description Default
source_types list[str] | None

List of source types to consider.

None
offset float

Offset for the y-limits.

0.02

Returns:

Type Description
dict[str, tuple[float, float]]

Y-limits for the given source types or all source types.

Source code in flyvision/analysis/moving_edge_currents.py
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
def ylims(
    self, source_types: list[str] | None = None, offset: float = 0.02
) -> dict[str, tuple[float, float]]:
    """
    Get the y-limits for temporal contributions summed over cells.

    Args:
        source_types: List of source types to consider.
        offset: Offset for the y-limits.

    Returns:
        Y-limits for the given source types or all source types.
    """
    if source_types is not None:
        return {
            cell_type: plt_utils.get_lims(c, offset)
            for cell_type, c in self.sum_over_cells().currents.items()
            if cell_type in source_types
        }
    return plt_utils.get_lims(list(self.sum_over_cells().currents.values()), offset)

plot_response

plot_response(
    contrast,
    angle,
    t_start=0,
    t_end=1,
    max_figure_height_cm=1.4477,
    panel_height_cm=1.4477,
    max_figure_width_cm=4.0513,
    panel_width_cm=4.0513,
    fontsize=5,
    model_average=True,
    color=(0, 0, 0),
    legend=False,
    hide_yaxis=True,
    trim_axes=True,
    quantile=None,
    scale_position=None,
    scale_label="{:.0f} ms",
    scale_unit=1000,
    hline=False,
    fig=None,
    ax=None,
)

Plot the response to a moving edge stimulus.

Parameters:

Name Type Description Default
contrast float

The contrast of the stimulus.

required
angle float

The angle of the stimulus.

required
t_start float

Start time for the plot.

0
t_end float

End time for the plot.

1
max_figure_height_cm float

Maximum figure height in centimeters.

1.4477
panel_height_cm float

Height of each panel in centimeters.

1.4477
max_figure_width_cm float

Maximum figure width in centimeters.

4.0513
panel_width_cm float

Width of each panel in centimeters.

4.0513
fontsize float

Font size for labels and titles.

5
model_average bool

Whether to plot the model average.

True
color tuple[float, float, float]

Color for the plot.

(0, 0, 0)
legend bool

Whether to show the legend.

False
hide_yaxis bool

Whether to hide the y-axis.

True
trim_axes bool

Whether to trim the axes.

True
quantile float | None

Quantile for shading.

None
scale_position str | None

Position of the scale.

None
scale_label str

Label format for the scale.

'{:.0f} ms'
scale_unit float

Unit for the scale.

1000
hline bool

Whether to show a horizontal line at 0.

False
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None

Returns:

Type Description

Figure and axes objects.

Source code in flyvision/analysis/moving_edge_currents.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
def plot_response(
    self,
    contrast: float,
    angle: float,
    t_start: float = 0,
    t_end: float = 1,
    max_figure_height_cm: float = 1.4477,
    panel_height_cm: float = 1.4477,
    max_figure_width_cm: float = 4.0513,
    panel_width_cm: float = 4.0513,
    fontsize: float = 5,
    model_average: bool = True,
    color: tuple[float, float, float] = (0, 0, 0),
    legend: bool = False,
    hide_yaxis: bool = True,
    trim_axes: bool = True,
    quantile: float | None = None,
    scale_position: str | None = None,  # "lower left",
    scale_label: str = "{:.0f} ms",
    scale_unit: float = 1000,
    hline: bool = False,
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
):
    """
    Plot the response to a moving edge stimulus.

    Args:
        contrast: The contrast of the stimulus.
        angle: The angle of the stimulus.
        t_start: Start time for the plot.
        t_end: End time for the plot.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        fontsize: Font size for labels and titles.
        model_average: Whether to plot the model average.
        color: Color for the plot.
        legend: Whether to show the legend.
        hide_yaxis: Whether to hide the y-axis.
        trim_axes: Whether to trim the axes.
        quantile: Quantile for shading.
        scale_position: Position of the scale.
        scale_label: Label format for the scale.
        scale_unit: Unit for the scale.
        hline: Whether to show a horizontal line at 0.
        fig: Existing figure to use.
        ax: Existing axes to use.

    Returns:
        Figure and axes objects.
    """
    r_pd = (
        self.at_angle(angle)
        .at_contrast(contrast)
        .between_seconds(t_start, t_end)
        .responses.squeeze(axis=-2)
    )
    r_nd = (
        self.at_angle((angle - 180) % 360)
        .at_contrast(contrast)
        .between_seconds(t_start, t_end)
        .responses.squeeze(axis=-2)
    )

    if fig is None and ax is None:
        figsize = figsize_from_n_items(
            1,
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=panel_height_cm,
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
        ax = axes[0]

    color = [hex2color(PD), hex2color(ND)] if color is None else [color, color]

    if model_average:
        fig, ax, _, _ = plots.traces(
            [r_pd.mean(axis=0), r_nd.mean(axis=0)],
            x=self.between_seconds(t_start, t_end).time,
            color=color,
            linewidth=1,
            fontsize=fontsize,
            null_line=False,
            fig=fig,
            ax=ax,
            linestyle=["solid", "dashed"],
            legend="" if not legend else [f"{self.target_type}", "null direction"],
            scale_pos=scale_position,
            scale_label=scale_label,
            scale_unit=scale_unit,
        )
    else:
        fig, ax, _, _ = plots.traces(
            r_pd,
            x=self.between_seconds(t_start, t_end).time,
            mean_color=adapt_color_alpha(color[0], 1),
            color=adapt_color_alpha(color[0], 0.5),
            linewidth=0.25,
            zorder_traces=0,
            zorder_mean=10,
            fontsize=fontsize,
            null_line=False,
            highlight_mean=True,
            fig=fig,
            ax=ax,
        )
        plots.traces(
            r_nd,
            x=self.between_seconds(t_start, t_end).time,
            mean_color=adapt_color_alpha(color[1], 1),
            color=adapt_color_alpha(color[1], 0.5),
            linewidth=0.25,
            zorder_traces=0,
            zorder_mean=10,
            fontsize=fontsize,
            null_line=False,
            highlight_mean=True,
            fig=fig,
            linestyle="dashed",
            ax=ax,
        )
    if quantile:
        quantile_pd = np.quantile(r_pd, quantile, axis=0)
        quantile_nd = np.quantile(r_nd, quantile, axis=0)
        ax.fill_between(
            self.between_seconds(t_start, t_end).time,
            quantile_pd[0],
            quantile_pd[1],
            facecolor=adapt_color_alpha(color[0], 0.1),
            edgecolor=adapt_color_alpha(color[0], 1),
            linewidth=0.25,
        )
        ax.fill_between(
            self.between_seconds(t_start, t_end).time,
            quantile_nd[0],
            quantile_nd[1],
            facecolor=adapt_color_alpha(color[1], 0.1),
            edgecolor=adapt_color_alpha(color[1], 1),
            linewidth=0.25,
            linestyle="dashed",
        )

    if hline:
        # horizontal line at 0
        ax.axhline(0, color=(0, 0, 0, 1), linewidth=0.25, zorder=-10)

    if hide_yaxis:
        plt_utils.rm_spines(ax, ("left",))
    if trim_axes:
        plt_utils.trim_axis(ax)
    if legend:
        ax.legend(
            fontsize=fontsize,
            ncols=1,
            bbox_to_anchor=(1.05, 1),
            loc="upper left",
            borderaxespad=0.0,
        )
    return fig, ax

plot_response_pc_nc

plot_response_pc_nc(
    contrast,
    angle,
    t_start=0,
    t_end=1,
    max_figure_height_cm=1.4477,
    panel_height_cm=1.4477,
    max_figure_width_cm=4.0513,
    panel_width_cm=4.0513,
    fontsize=5,
    model_average=True,
    color=(0, 0, 0),
    legend=False,
    hide_yaxis=True,
    trim_axes=True,
    quantile=None,
    scale_position=None,
    scale_label="{:.0f} ms",
    scale_unit=1000,
    fig=None,
    ax=None,
    hline=False,
)

Plot the response to a moving edge stimulus with positive and negative contrasts.

Parameters:

Name Type Description Default
contrast float

The contrast of the stimulus.

required
angle float

The angle of the stimulus.

required
t_start float

Start time for the plot.

0
t_end float

End time for the plot.

1
max_figure_height_cm float

Maximum figure height in centimeters.

1.4477
panel_height_cm float

Height of each panel in centimeters.

1.4477
max_figure_width_cm float

Maximum figure width in centimeters.

4.0513
panel_width_cm float

Width of each panel in centimeters.

4.0513
fontsize float

Font size for labels and titles.

5
model_average bool

Whether to plot the model average.

True
color tuple[float, float, float]

Color for the plot.

(0, 0, 0)
legend bool

Whether to show the legend.

False
hide_yaxis bool

Whether to hide the y-axis.

True
trim_axes bool

Whether to trim the axes.

True
quantile float | None

Quantile for shading.

None
scale_position str | None

Position of the scale.

None
scale_label str

Label format for the scale.

'{:.0f} ms'
scale_unit float

Unit for the scale.

1000
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None
hline bool

Whether to show a horizontal line at 0.

False

Returns:

Type Description
tuple[Figure, Axes]

Figure and axes objects.

Source code in flyvision/analysis/moving_edge_currents.py
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
def plot_response_pc_nc(
    self,
    contrast: float,
    angle: float,
    t_start: float = 0,
    t_end: float = 1,
    max_figure_height_cm: float = 1.4477,
    panel_height_cm: float = 1.4477,
    max_figure_width_cm: float = 4.0513,
    panel_width_cm: float = 4.0513,
    fontsize: float = 5,
    model_average: bool = True,
    color: tuple[float, float, float] = (0, 0, 0),
    legend: bool = False,
    hide_yaxis: bool = True,
    trim_axes: bool = True,
    quantile: float | None = None,
    scale_position: str | None = None,
    scale_label: str = "{:.0f} ms",
    scale_unit: float = 1000,
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
    hline: bool = False,
) -> tuple[plt.Figure, plt.Axes]:
    """
    Plot the response to a moving edge stimulus with positive and negative contrasts.

    Args:
        contrast: The contrast of the stimulus.
        angle: The angle of the stimulus.
        t_start: Start time for the plot.
        t_end: End time for the plot.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        fontsize: Font size for labels and titles.
        model_average: Whether to plot the model average.
        color: Color for the plot.
        legend: Whether to show the legend.
        hide_yaxis: Whether to hide the y-axis.
        trim_axes: Whether to trim the axes.
        quantile: Quantile for shading.
        scale_position: Position of the scale.
        scale_label: Label format for the scale.
        scale_unit: Unit for the scale.
        fig: Existing figure to use.
        ax: Existing axes to use.
        hline: Whether to show a horizontal line at 0.

    Returns:
        Figure and axes objects.
    """
    r_pc = (
        self.at_angle(angle)
        .at_contrast(contrast)
        .between_seconds(t_start, t_end)
        .responses.squeeze(axis=-2)
    )
    r_nc = (
        self.at_angle(angle)
        .at_contrast(0 if contrast == 1 else 1)
        .between_seconds(t_start, t_end)
        .responses.squeeze(axis=-2)
    )

    if fig is None and ax is None:
        figsize = figsize_from_n_items(
            1,
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=panel_height_cm,
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
        ax = axes[0]

    color = [hex2color(PD), hex2color(ND)] if color is None else [color, color]

    if model_average:
        fig, ax, _, _ = plots.traces(
            [r_pc.mean(axis=0), r_nc.mean(axis=0)],
            x=self.between_seconds(t_start, t_end).time,
            color=color,
            linewidth=1,
            fontsize=fontsize,
            null_line=False,
            fig=fig,
            ax=ax,
            linestyle=["solid", "dotted"],
            legend="" if not legend else [f"{self.target_type}", "null contrast"],
            scale_pos=scale_position,
            scale_label=scale_label,
            scale_unit=scale_unit,
        )
    else:
        fig, ax, _, _ = plots.traces(
            r_pc,
            x=self.between_seconds(t_start, t_end).time,
            mean_color=adapt_color_alpha(color[0], 1),
            color=adapt_color_alpha(color[0], 0.5),
            linewidth=0.25,
            zorder_traces=0,
            zorder_mean=10,
            fontsize=fontsize,
            null_line=False,
            highlight_mean=True,
            fig=fig,
            ax=ax,
        )
        plots.traces(
            r_nc,
            x=self.between_seconds(t_start, t_end).time,
            mean_color=adapt_color_alpha(color[1], 1),
            color=adapt_color_alpha(color[1], 0.5),
            linewidth=0.25,
            zorder_traces=0,
            zorder_mean=10,
            fontsize=fontsize,
            null_line=False,
            highlight_mean=True,
            fig=fig,
            linestyle="dashed",
            ax=ax,
        )
    if quantile:
        quantile_pd = np.quantile(r_pc, quantile, axis=0)
        quantile_nd = np.quantile(r_nc, quantile, axis=0)
        ax.fill_between(
            self.between_seconds(t_start, t_end).time,
            quantile_pd[0],
            quantile_pd[1],
            facecolor=adapt_color_alpha(color[0], 0.1),
            edgecolor=adapt_color_alpha(color[0], 1),
            linewidth=0.25,
        )
        ax.fill_between(
            self.between_seconds(t_start, t_end).time,
            quantile_nd[0],
            quantile_nd[1],
            facecolor=adapt_color_alpha(color[1], 0.1),
            edgecolor=adapt_color_alpha(color[1], 1),
            linewidth=0.25,
            linestyle="dashed",
        )

    # horizontal line at 0
    if hline:
        ax.axhline(0, color=(0, 0, 0, 1), linewidth=0.25, zorder=-10)

    if hide_yaxis:
        plt_utils.rm_spines(ax, ("left",))
    if trim_axes:
        plt_utils.trim_axis(ax)
    if legend:
        ax.legend(
            fontsize=fontsize,
            ncols=1,
            bbox_to_anchor=(1.05, 1),
            loc="upper left",
            borderaxespad=0.0,
        )
    return fig, ax

plot_temporal_contributions

plot_temporal_contributions(
    contrast,
    angle,
    t_start=0,
    t_end=1,
    fontsize=5,
    linewidth=0.25,
    legend=False,
    legend_standalone=True,
    legend_figsize_cm=(4.0572, 1),
    legend_n_rows=None,
    max_figure_height_cm=3.3941,
    panel_height_cm=3.3941,
    max_figure_width_cm=4.0572,
    panel_width_cm=4.0572,
    model_average=True,
    highlight_mean=True,
    sum_exc_inh=False,
    only_sum=False,
    hide_source_types="auto",
    hide_source_types_bins=5,
    hide_source_types_cut_off_edge=1,
    hide_source_types_mode="below_cut_off",
    hide_yaxis=True,
    trim_axes=True,
    quantile=None,
    fig=None,
    ax=None,
    legend_ax=None,
    hline=True,
    legend_n_cols=None,
    baseline_color=None,
    colors=None,
)

Plot temporal contributions of different source types.

Parameters:

Name Type Description Default
contrast float

The contrast of the stimulus.

required
angle float

The angle of the stimulus.

required
t_start float

Start time for the plot.

0
t_end float

End time for the plot.

1
fontsize float

Font size for labels and titles.

5
linewidth float

Line width for traces.

0.25
legend bool

Whether to show the legend.

False
legend_standalone bool

Whether to create a standalone legend.

True
legend_figsize_cm tuple[float, float]

Figure size for the standalone legend.

(4.0572, 1)
legend_n_rows int | None

Number of rows for the standalone legend.

None
max_figure_height_cm float

Maximum figure height in centimeters.

3.3941
panel_height_cm float

Height of each panel in centimeters.

3.3941
max_figure_width_cm float

Maximum figure width in centimeters.

4.0572
panel_width_cm float

Width of each panel in centimeters.

4.0572
model_average bool

Whether to plot the model average.

True
highlight_mean bool

Whether to highlight the mean trace.

True
sum_exc_inh bool

Whether to sum excitatory and inhibitory contributions.

False
only_sum bool

Whether to only plot the summed contributions.

False
hide_source_types str | list | None

Source types to hide or “auto”.

'auto'
hide_source_types_bins int

Number of bins for auto-hiding.

5
hide_source_types_cut_off_edge int

Cut-off edge for auto-hiding.

1
hide_source_types_mode str

Mode for auto-hiding source types.

'below_cut_off'
hide_yaxis bool

Whether to hide the y-axis.

True
trim_axes bool

Whether to trim the axes.

True
quantile float | None

Quantile for shading.

None
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None
legend_ax Axes | None

Existing axes for the standalone legend.

None
hline bool

Whether to show a horizontal line at 0.

True
legend_n_cols int | None

Number of columns for the standalone legend.

None
baseline_color tuple[float, float, float, float] | None

Color for the baseline.

None
colors dict[str, tuple[float, float, float, float]] | None

Colors for each source type.

None

Returns:

Type Description

Figure, axes, and legend axes objects.

Example
view = MovingEdgeCurrentView(...)
fig, ax = view.plot_temporal_contributions(
    contrast=1.0,
    angle=0,
    t_start=0,
    t_end=1,
    fontsize=5,
    linewidth=0.25,
    legend=True
)
Source code in flyvision/analysis/moving_edge_currents.py
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
def plot_temporal_contributions(
    self,
    contrast: float,
    angle: float,
    t_start: float = 0,
    t_end: float = 1,
    fontsize: float = 5,
    linewidth: float = 0.25,
    legend: bool = False,
    legend_standalone: bool = True,
    legend_figsize_cm: tuple[float, float] = (4.0572, 1),
    legend_n_rows: int | None = None,
    max_figure_height_cm: float = 3.3941,
    panel_height_cm: float = 3.3941,
    max_figure_width_cm: float = 4.0572,
    panel_width_cm: float = 4.0572,
    model_average: bool = True,
    highlight_mean: bool = True,  # only applies if model_average is False
    sum_exc_inh: bool = False,
    only_sum: bool = False,
    hide_source_types: str | list | None = "auto",
    hide_source_types_bins: int = 5,
    hide_source_types_cut_off_edge: int = 1,
    hide_source_types_mode: str = "below_cut_off",
    hide_yaxis: bool = True,
    trim_axes: bool = True,
    quantile: float | None = None,
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
    legend_ax: plt.Axes | None = None,
    hline: bool = True,
    legend_n_cols: int | None = None,
    baseline_color: tuple[float, float, float, float] | None = None,
    colors: dict[str, tuple[float, float, float, float]] | None = None,
):
    """
    Plot temporal contributions of different source types.

    Args:
        contrast: The contrast of the stimulus.
        angle: The angle of the stimulus.
        t_start: Start time for the plot.
        t_end: End time for the plot.
        fontsize: Font size for labels and titles.
        linewidth: Line width for traces.
        legend: Whether to show the legend.
        legend_standalone: Whether to create a standalone legend.
        legend_figsize_cm: Figure size for the standalone legend.
        legend_n_rows: Number of rows for the standalone legend.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        model_average: Whether to plot the model average.
        highlight_mean: Whether to highlight the mean trace.
        sum_exc_inh: Whether to sum excitatory and inhibitory contributions.
        only_sum: Whether to only plot the summed contributions.
        hide_source_types: Source types to hide or "auto".
        hide_source_types_bins: Number of bins for auto-hiding.
        hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
        hide_source_types_mode: Mode for auto-hiding source types.
        hide_yaxis: Whether to hide the y-axis.
        trim_axes: Whether to trim the axes.
        quantile: Quantile for shading.
        fig: Existing figure to use.
        ax: Existing axes to use.
        legend_ax: Existing axes for the standalone legend.
        hline: Whether to show a horizontal line at 0.
        legend_n_cols: Number of columns for the standalone legend.
        baseline_color: Color for the baseline.
        colors: Colors for each source type.

    Returns:
        Figure, axes, and legend axes objects.

    Example:
        ```
        view = MovingEdgeCurrentView(...)
        fig, ax = view.plot_temporal_contributions(
            contrast=1.0,
            angle=0,
            t_start=0,
            t_end=1,
            fontsize=5,
            linewidth=0.25,
            legend=True
        )
        ```
    """
    if fig is None and ax is None:
        figsize = figsize_from_n_items(
            1,
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=panel_height_cm,
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
        ax = axes[0]
    cv_pd = (
        self.at_contrast(contrast)
        .at_angle(angle)
        .between_seconds(t_start, t_end)
        .sum_over_cells()
    )
    cv_nd = (
        self.at_contrast(contrast)
        .at_angle((angle - 180) % 360)
        .between_seconds(t_start, t_end)
        .sum_over_cells()
    )

    source_types = (
        self.at_contrast(contrast)
        .at_angle([angle, (angle - 180) % 360])
        .between_seconds(t_start, t_end)
        .filter_source_types(
            hide_source_types,
            hide_source_types_bins,
            hide_source_types_cut_off_edge,
            hide_source_types_mode,
        )
    )

    color_source_types = (
        self.at_contrast(contrast)
        .at_angle([angle, (angle - 180) % 360])
        .between_seconds(t_start, t_end)
        .filter_source_types(
            None,
            hide_source_types_bins,
            hide_source_types_cut_off_edge,
            hide_source_types_mode,
        )
    )
    cv_pd.init_colors(color_source_types)
    cv_nd.init_colors(color_source_types)

    def plot_mean_trace(
        time, trace, label, color, zorder, linestyle="solid", ax=None, fig=None
    ):
        ax.plot(
            time,
            trace,
            label=label,
            color=color,
            zorder=zorder,
            linestyle=linestyle,
        )

    def plot_individual_traces(
        traces, time, color, zorder, label, linestyle="solid", legend=None
    ):
        if not only_sum and not model_average:
            plots.traces(
                traces,
                time,
                mean_color=color,
                color=color,
                linewidth=linewidth,
                zorder_traces=0,
                zorder_mean=zorder,
                fontsize=fontsize,
                null_line=True,
                highlight_mean=highlight_mean,
                fig=fig,
                ax=ax,
                legend=legend or label,
                linestyle=linestyle,
            )

    def plot_quantile(traces, time, color, zorder, linestyle="solid"):
        if quantile:
            Q = np.quantile(traces, quantile, axis=0)
            ax.fill_between(
                time,
                Q[0],
                Q[1],
                facecolor=adapt_color_alpha(color, 0.1),
                edgecolor=color,
                linewidth=0.25,
                linestyle=linestyle,
                zorder=zorder - 1,
            )

    def plot_summed_trace(time, trace, label, color, zorder, linestyle="solid"):
        if np.any(trace):
            ax.plot(
                time,
                trace,
                label=label,
                color=color,
                zorder=zorder,
                linestyle=linestyle,
            )

    def get_summed_traces(signs, source_types, cv_pd, cv_nd):
        # sum over cell types then average over models
        exc_pd = np.zeros(cv_pd.shape)
        inh_pd = np.zeros(cv_pd.shape)
        exc_nd = np.zeros(cv_nd.shape)
        inh_nd = np.zeros(cv_nd.shape)
        # sum over cell types
        for source_type in source_types:
            if signs[source_type] == 1:
                exc_pd += cv_pd[source_type][:]  # (1, n_models, 1, n_timesteps)
                exc_nd += cv_nd[source_type][:]
            else:
                inh_pd += cv_pd[source_type][:]
                inh_nd += cv_nd[source_type][:]
        # (n_models, n_timesteps)
        return (
            exc_pd.squeeze(),
            inh_pd.squeeze(),
            exc_nd.squeeze(),
            inh_nd.squeeze(),
        )

    for source_type in source_types:
        if model_average and not only_sum:
            # mean traces solid for PD and dashed for ND
            if baseline_color is not None:
                color = baseline_color
            elif colors:
                color = colors[source_type]
            else:
                color = cv_pd.color(source_type)

            plot_mean_trace(
                cv_pd.time,
                cv_pd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                source_type,
                color,
                cv_pd.zorder(source_types, source_type),
                ax=ax,
                fig=fig,
            )
            plot_mean_trace(
                cv_nd.time,
                cv_nd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                source_type,
                color,
                linestyle="dashed",
                zorder=cv_pd.zorder(source_types, source_type),
                ax=ax,
                fig=fig,
            )

        elif not model_average and not only_sum:
            # individual traces
            plot_individual_traces(
                cv_pd[source_type][:].squeeze(axis=-2),
                cv_pd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                source_type,
            )
            plot_individual_traces(
                cv_nd[source_type][:].squeeze(axis=-2),
                cv_nd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                source_type,
                linestyle="dashed",
                legend="null direction",
            )

        # quantiles
        plot_quantile(
            cv_pd[source_type][:].squeeze(axis=-2),
            cv_pd.time,
            cv_pd.color(source_type),
            cv_pd.zorder(source_types, source_type),
            linestyle="solid",
        )
        plot_quantile(
            cv_nd[source_type][:].squeeze(axis=-2),
            cv_nd.time,
            cv_pd.color(source_type),
            cv_pd.zorder(source_types, source_type),
            linestyle="dashed",
        )
    if sum_exc_inh or only_sum:
        # plot summed traces
        signs = cv_pd.signs()
        exc_pd, inh_pd, exc_nd, inh_nd = get_summed_traces(
            signs, source_types, cv_pd, cv_nd
        )
        plot_summed_trace(
            cv_pd.time,
            exc_pd.mean(axis=0),
            "excitatory",
            (0.931, 0.0, 0.0, 1.0),
            zorder=2000,
        )
        plot_quantile(
            exc_pd,
            cv_pd.time,
            (0.931, 0.0, 0.0, 1.0),
            zorder=0,
            linestyle="solid",
        )
        plot_summed_trace(
            cv_nd.time,
            exc_nd.mean(axis=0),
            "excitatory",
            (0.931, 0.0, 0.0, 1.0),
            zorder=2000,
            linestyle="dashed",
        )
        plot_quantile(
            exc_nd,
            cv_pd.time,
            (0.931, 0.0, 0.0, 1.0),
            zorder=0,
            linestyle="dashed",
        )
        plot_summed_trace(
            cv_pd.time,
            inh_pd.mean(axis=0),
            "inhibitory",
            (0.0, 0.0, 0.849, 1.0),
            zorder=2000,
        )
        plot_quantile(
            inh_pd,
            cv_pd.time,
            (0.0, 0.0, 0.849, 1.0),
            zorder=0,
            linestyle="solid",
        )
        plot_summed_trace(
            cv_nd.time,
            inh_nd.mean(axis=0),
            "inhibitory",
            (0.0, 0.0, 0.849, 1.0),
            zorder=2000,
            linestyle="dashed",
        )
        plot_quantile(
            inh_nd,
            cv_pd.time,
            (0.0, 0.0, 0.849, 1.0),
            zorder=0,
            linestyle="dashed",
        )

    if hline:
        ax.hlines(
            0,
            cv_pd.time.min(),
            cv_pd.time.max(),
            color=(0, 0, 0, 1),
            linewidth=0.25,
            zorder=-10,
        )

    if legend:
        ax.legend(
            fontsize=fontsize,
            ncols=1,
            bbox_to_anchor=(1.05, 1),
            loc="upper left",
            borderaxespad=0.0,
        )
    else:
        ax.legend().set_visible(False)

    ax.set_xlabel("time (s)", fontsize=fontsize)
    #         ax.set_ylabel("current (a.u.)", fontsize=fontsize)

    if hide_yaxis:
        plt_utils.rm_spines(ax, ("left",))

    if trim_axes:
        plt_utils.trim_axis(ax)

    if legend_standalone:
        handles, labels = ax.get_legend_handles_labels()
        nd_handle = Line2D(
            [0], [0], color="k", lw=1, label="null direction", ls="dashed"
        )
        legend_n_rows = legend_n_rows or len(labels) + 1
        # legend_n_cols = (len(labels) + 1) // legend_n_rows
        legend_fig, legend_ax = plt_utils.standalone_legend(
            [*labels[::2], "null direction"],
            None,
            [*handles[::2], nd_handle],
            fontsize=fontsize,
            n_cols=legend_n_cols,
            handlelength=2,
            columnspacing=0.8,
            labelspacing=0.25,
            figsize=cm_to_inch(legend_figsize_cm),
            fig=fig if legend_ax is not None else None,
            ax=legend_ax,
        )
        return fig, ax, legend_fig, legend_ax
    return fig, ax

plot_temporal_contributions_pc_nc

plot_temporal_contributions_pc_nc(
    contrast,
    angle,
    t_start=0,
    t_end=1,
    fontsize=5,
    linewidth=0.25,
    legend=False,
    legend_standalone=True,
    legend_figsize_cm=(4.0572, 1),
    legend_n_rows=None,
    max_figure_height_cm=3.3941,
    panel_height_cm=3.3941,
    max_figure_width_cm=4.0572,
    panel_width_cm=4.0572,
    model_average=True,
    highlight_mean=True,
    sum_exc_inh=False,
    only_sum=False,
    hide_source_types="auto",
    hide_source_types_bins=5,
    hide_source_types_cut_off_edge=1,
    hide_source_types_mode="below_cut_off",
    hide_yaxis=True,
    trim_axes=True,
    quantile=None,
    fig=None,
    ax=None,
    legend_ax=None,
    null_linestyle="dotted",
    legend_n_cols=None,
)

Temporal contributions of different source types for positive/negative contrasts.

Parameters:

Name Type Description Default
contrast float

The contrast of the stimulus.

required
angle float

The angle of the stimulus.

required
t_start float

Start time for the plot.

0
t_end float

End time for the plot.

1
fontsize float

Font size for labels and titles.

5
linewidth float

Line width for traces.

0.25
legend bool

Whether to show the legend.

False
legend_standalone bool

Whether to create a standalone legend.

True
legend_figsize_cm tuple[float, float]

Figure size for the standalone legend.

(4.0572, 1)
legend_n_rows int | None

Number of rows for the standalone legend.

None
max_figure_height_cm float

Maximum figure height in centimeters.

3.3941
panel_height_cm float

Height of each panel in centimeters.

3.3941
max_figure_width_cm float

Maximum figure width in centimeters.

4.0572
panel_width_cm float

Width of each panel in centimeters.

4.0572
model_average bool

Whether to plot the model average.

True
highlight_mean bool

Whether to highlight the mean trace.

True
sum_exc_inh bool

Whether to sum excitatory and inhibitory contributions.

False
only_sum bool

Whether to only plot the summed contributions.

False
hide_source_types str | list | None

Source types to hide or “auto”.

'auto'
hide_source_types_bins int

Number of bins for auto-hiding.

5
hide_source_types_cut_off_edge int

Cut-off edge for auto-hiding.

1
hide_source_types_mode str

Mode for auto-hiding source types.

'below_cut_off'
hide_yaxis bool

Whether to hide the y-axis.

True
trim_axes bool

Whether to trim the axes.

True
quantile float | None

Quantile for shading.

None
fig Figure | None

Existing figure to use.

None
ax Axes | None

Existing axes to use.

None
legend_ax Axes | None

Existing axes for the standalone legend.

None
null_linestyle str

Linestyle for null direction traces.

'dotted'
legend_n_cols int | None

Number of columns for the standalone legend.

None

Returns:

Type Description
tuple[Figure, Axes, Figure | None, Axes | None]

Figure, axes, and legend axes objects.

Example
view = MovingEdgeCurrentView(...)
fig, ax = view.plot_temporal_contributions_pc_nc(
    contrast=1.0,
    angle=0,
    t_start=0,
    t_end=1,
    fontsize=5,
    linewidth=0.25,
    legend=True
)
Source code in flyvision/analysis/moving_edge_currents.py
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
def plot_temporal_contributions_pc_nc(
    self,
    contrast: float,
    angle: float,
    t_start: float = 0,
    t_end: float = 1,
    fontsize: float = 5,
    linewidth: float = 0.25,
    legend: bool = False,
    legend_standalone: bool = True,
    legend_figsize_cm: tuple[float, float] = (4.0572, 1),
    legend_n_rows: int | None = None,
    max_figure_height_cm: float = 3.3941,
    panel_height_cm: float = 3.3941,
    max_figure_width_cm: float = 4.0572,
    panel_width_cm: float = 4.0572,
    model_average: bool = True,
    highlight_mean: bool = True,
    sum_exc_inh: bool = False,
    only_sum: bool = False,
    hide_source_types: str | list | None = "auto",
    hide_source_types_bins: int = 5,
    hide_source_types_cut_off_edge: int = 1,
    hide_source_types_mode: str = "below_cut_off",
    hide_yaxis: bool = True,
    trim_axes: bool = True,
    quantile: float | None = None,
    fig: plt.Figure | None = None,
    ax: plt.Axes | None = None,
    legend_ax: plt.Axes | None = None,
    null_linestyle: str = "dotted",
    legend_n_cols: int | None = None,
) -> tuple[plt.Figure, plt.Axes, plt.Figure | None, plt.Axes | None]:
    """
    Temporal contributions of different source types for positive/negative contrasts.

    Args:
        contrast: The contrast of the stimulus.
        angle: The angle of the stimulus.
        t_start: Start time for the plot.
        t_end: End time for the plot.
        fontsize: Font size for labels and titles.
        linewidth: Line width for traces.
        legend: Whether to show the legend.
        legend_standalone: Whether to create a standalone legend.
        legend_figsize_cm: Figure size for the standalone legend.
        legend_n_rows: Number of rows for the standalone legend.
        max_figure_height_cm: Maximum figure height in centimeters.
        panel_height_cm: Height of each panel in centimeters.
        max_figure_width_cm: Maximum figure width in centimeters.
        panel_width_cm: Width of each panel in centimeters.
        model_average: Whether to plot the model average.
        highlight_mean: Whether to highlight the mean trace.
        sum_exc_inh: Whether to sum excitatory and inhibitory contributions.
        only_sum: Whether to only plot the summed contributions.
        hide_source_types: Source types to hide or "auto".
        hide_source_types_bins: Number of bins for auto-hiding.
        hide_source_types_cut_off_edge: Cut-off edge for auto-hiding.
        hide_source_types_mode: Mode for auto-hiding source types.
        hide_yaxis: Whether to hide the y-axis.
        trim_axes: Whether to trim the axes.
        quantile: Quantile for shading.
        fig: Existing figure to use.
        ax: Existing axes to use.
        legend_ax: Existing axes for the standalone legend.
        null_linestyle: Linestyle for null direction traces.
        legend_n_cols: Number of columns for the standalone legend.

    Returns:
        Figure, axes, and legend axes objects.

    Example:
        ```
        view = MovingEdgeCurrentView(...)
        fig, ax = view.plot_temporal_contributions_pc_nc(
            contrast=1.0,
            angle=0,
            t_start=0,
            t_end=1,
            fontsize=5,
            linewidth=0.25,
            legend=True
        )
        ```
    """
    if fig is None and ax is None:
        figsize = figsize_from_n_items(
            1,
            max_figure_height_cm=max_figure_height_cm,
            panel_height_cm=panel_height_cm,
            max_figure_width_cm=max_figure_width_cm,
            panel_width_cm=panel_width_cm,
        )
        fig, axes = figsize.axis_grid(hspace=0.0, wspace=0, fontsize=fontsize)
        ax = axes[0]
    cv_pd = (
        self.at_contrast(contrast)
        .at_angle(angle)
        .between_seconds(t_start, t_end)
        .sum_over_cells()
    )
    cv_nd = (
        self.at_contrast(contrast)
        .at_angle((angle - 180) % 360)
        .between_seconds(t_start, t_end)
        .sum_over_cells()
    )

    source_types = (
        self.at_contrast(contrast)
        .at_angle([angle, (angle - 180) % 360])
        .between_seconds(t_start, t_end)
        .filter_source_types(
            hide_source_types,
            hide_source_types_bins,
            hide_source_types_cut_off_edge,
            hide_source_types_mode,
        )
    )

    color_source_types = (
        self.at_contrast(contrast)
        .at_angle([angle, (angle - 180) % 360])
        .between_seconds(t_start, t_end)
        .filter_source_types(
            None,
            hide_source_types_bins,
            hide_source_types_cut_off_edge,
            hide_source_types_mode,
        )
    )
    cv_pd.init_colors(color_source_types)
    cv_nd.init_colors(color_source_types)

    def plot_mean_trace(
        time, trace, label, color, zorder, linestyle="solid", ax=None, fig=None
    ):
        ax.plot(
            time,
            trace,
            label=label,
            color=color,
            zorder=zorder,
            linestyle=linestyle,
        )

    def plot_individual_traces(
        traces, time, color, zorder, label, linestyle="solid", legend=None
    ):
        if not only_sum and not model_average:
            plots.traces(
                traces,
                time,
                mean_color=color,
                color=color,
                linewidth=linewidth,
                zorder_traces=0,
                zorder_mean=zorder,
                fontsize=fontsize,
                null_line=True,
                highlight_mean=highlight_mean,
                fig=fig,
                ax=ax,
                legend=legend or label,
                linestyle=linestyle,
            )

    def plot_quantile(traces, time, color, zorder, linestyle="solid"):
        if quantile:
            Q = np.quantile(traces, quantile, axis=0)
            ax.fill_between(
                time,
                Q[0],
                Q[1],
                facecolor=adapt_color_alpha(color, 0.1),
                edgecolor=color,
                linewidth=0.25,
                linestyle=linestyle,
                zorder=zorder - 1,
            )

    def plot_summed_trace(time, trace, label, color, zorder, linestyle="solid"):
        if np.any(trace):
            ax.plot(
                time,
                trace,
                label=label,
                color=color,
                zorder=zorder,
                linestyle=linestyle,
            )

    def get_summed_traces(signs, source_types, cv_pd, cv_nd):
        # sum over cell types then average over models
        exc_pd = np.zeros(cv_pd.shape)
        inh_pd = np.zeros(cv_pd.shape)
        exc_nd = np.zeros(cv_nd.shape)
        inh_nd = np.zeros(cv_nd.shape)
        # sum over cell types
        for source_type in source_types:
            if signs[source_type] == 1:
                exc_pd += cv_pd[source_type][:]  # (1, n_models, 1, n_timesteps)
                exc_nd += cv_nd[source_type][:]
            else:
                inh_pd += cv_pd[source_type][:]
                inh_nd += cv_nd[source_type][:]
        # (n_models, n_timesteps)
        return (
            exc_pd.squeeze(),
            inh_pd.squeeze(),
            exc_nd.squeeze(),
            inh_nd.squeeze(),
        )

    for source_type in source_types:
        if model_average and not only_sum:
            # mean traces solid for PD and dashed for ND
            color = cv_pd.color(source_type)

            plot_mean_trace(
                cv_pd.time,
                cv_pd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                source_type,
                color,
                cv_pd.zorder(source_types, source_type),
                ax=ax,
                fig=fig,
            )
            plot_mean_trace(
                cv_nd.time,
                cv_nd[source_type][:].squeeze(axis=-2).T.mean(axis=1),
                source_type,
                color,
                linestyle=null_linestyle,
                zorder=cv_pd.zorder(source_types, source_type),
                ax=ax,
                fig=fig,
            )

        elif not model_average and not only_sum:
            # individual traces
            plot_individual_traces(
                cv_pd[source_type][:].squeeze(axis=-2),
                cv_pd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                source_type,
            )
            plot_individual_traces(
                cv_nd[source_type][:].squeeze(axis=-2),
                cv_nd.time,
                cv_pd.color(source_type),
                cv_pd.zorder(source_types, source_type),
                source_type,
                linestyle=null_linestyle,
                legend="null direction",
            )

        # quantiles
        plot_quantile(
            cv_pd[source_type][:].squeeze(axis=-2),
            cv_pd.time,
            cv_pd.color(source_type),
            cv_pd.zorder(source_types, source_type),
            linestyle="solid",
        )
        plot_quantile(
            cv_nd[source_type][:].squeeze(axis=-2),
            cv_nd.time,
            cv_pd.color(source_type),
            cv_pd.zorder(source_types, source_type),
            linestyle=null_linestyle,
        )
    if sum_exc_inh or only_sum:
        # plot summed traces
        signs = cv_pd.signs()
        exc_pd, inh_pd, exc_nd, inh_nd = get_summed_traces(
            signs, source_types, cv_pd, cv_nd
        )
        plot_summed_trace(
            cv_pd.time,
            exc_pd.mean(axis=0),
            "excitatory",
            (0.931, 0.0, 0.0, 1.0),
            zorder=2000,
        )
        plot_quantile(
            exc_pd,
            cv_pd.time,
            (0.931, 0.0, 0.0, 1.0),
            zorder=0,
            linestyle="solid",
        )
        plot_summed_trace(
            cv_nd.time,
            exc_nd.mean(axis=0),
            "excitatory",
            (0.931, 0.0, 0.0, 1.0),
            zorder=2000,
            linestyle=null_linestyle,
        )
        plot_quantile(
            exc_nd,
            cv_pd.time,
            (0.931, 0.0, 0.0, 1.0),
            zorder=0,
            linestyle=null_linestyle,
        )
        plot_summed_trace(
            cv_pd.time,
            inh_pd.mean(axis=0),
            "inhibitory",
            (0.0, 0.0, 0.849, 1.0),
            zorder=2000,
        )
        plot_quantile(
            inh_pd,
            cv_pd.time,
            (0.0, 0.0, 0.849, 1.0),
            zorder=0,
            linestyle="solid",
        )
        plot_summed_trace(
            cv_nd.time,
            inh_nd.mean(axis=0),
            "inhibitory",
            (0.0, 0.0, 0.849, 1.0),
            zorder=2000,
            linestyle=null_linestyle,
        )
        plot_quantile(
            inh_nd,
            cv_pd.time,
            (0.0, 0.0, 0.849, 1.0),
            zorder=0,
            linestyle=null_linestyle,
        )

    if legend:
        ax.legend(
            fontsize=fontsize,
            ncols=1,
            bbox_to_anchor=(1.05, 1),
            loc="upper left",
            borderaxespad=0.0,
        )
    else:
        ax.legend().set_visible(False)

    ax.set_xlabel("time (s)", fontsize=fontsize)
    #         ax.set_ylabel("current (a.u.)", fontsize=fontsize)

    if hide_yaxis:
        plt_utils.rm_spines(ax, ("left",))

    if trim_axes:
        plt_utils.trim_axis(ax)

    if legend_standalone:
        handles, labels = ax.get_legend_handles_labels()
        nd_handle = Line2D(
            [0], [0], color="k", lw=1, label="null direction", ls=null_linestyle
        )
        legend_n_rows = legend_n_rows or len(labels) + 1
        # legend_n_cols = (len(labels) + 1) // legend_n_rows
        legend_fig, legend_ax = plt_utils.standalone_legend(
            [*labels[::2], "null direction"],
            None,
            [*handles[::2], nd_handle],
            fontsize=fontsize,
            n_cols=legend_n_cols,
            handlelength=2,
            columnspacing=0.8,
            labelspacing=0.25,
            figsize=cm_to_inch(legend_figsize_cm),
            fig=fig if legend_ax is not None else None,
            ax=legend_ax,
        )
        return fig, ax, legend_fig, legend_ax
    return fig, ax, None, None